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ABSTRACT

The Simulation of A Parallel Processor Based Small Tactical System is a part of

The Parallel Command and Decision System (PARCDS) Laboratory, which was

established in early 1980's to support research for the Navy's AEGIS combat system.

Current U.S. Navy's AEGIS system using the standard AN/UYK-7 computers,

which has four processors in the computer system. When one of them fails, the system

automatically reloads the remaining three processors with software that has a reduced

capability. But in probably less than one decade, they will not be capable of handling the

increasing demand for some more complex software systems.

Military command and decision systems of the next decade must be characterized

by economy, speed, stability, reliability, and ease of repair. The transputer features all of

these benefits and provides a scalable network of transputers which is relatively easy to

design. The need for parallel processing grows more evident daily, since the best high-

performance uniprocessor architectures are reaching their limits.

The prime objective of this thesis is to model a small tactical system by using a

network of transputers to develop the transputer version of the Ada programming

language system which models a small tactical system. Accesio__ For
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THESIS DISCLAIMER

This thesis use a number of names which are trademarks of various corporations.

In this section we give the appropriate credits.

- Ada is a trademark of the United States Government Ada Joint Program Office.

- Transputer and OCCAM are trademark of the INMOS Limited, United Kingdom.

- Alsys-Ada is a trademark of Alsys Limited, United Kingdom.

- MS-DOS is a trademark of Microsoft Corporation.

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defence or the U.S.Government.
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I. INTRODUCTION

A. BACKGROUND

1. Historical Background

Since World War II, the development of radar has produced spectacular

changes in the conduct of naval warfare. Jet aircraft replaced their propeller driven

predecessors. The increasing speed of attackers such as aircraft or missiles was seen as

a reason for a requirement of some type of system or technique to gather operational data,

process the data into meaningful information, and present the information as fast as

possible in order to make the intercept decisions.

In the late 1950's and earlv' 1960's, with the inception of the Navy Tactical

Data System (NTDS), the U.S. Navy began using computers in tactical shipboard systems.

The Naval Tactical Data System evolved from this need to normalize and convert

increasing amount of information from multiple sources to common representations that

could be processed. stored, and disseminated to shipboard tactical users so that weapons

employment decisions could be made more effective with less reaction time. [Ref.1]

In the late 1970's the developers had the primary mission of investigating

alternative architectures for the Aegis combat system. Aegis, named after the shield of

Zeus. was originally designed for the U.S. Ticonderoga class (CG-47) guided missile

cruiser, whose central unit is the three dimensional Phase Array Radar AN/SPY-I, the

four processors computer system AN/L7YK-7 and the weapons control system.



In early 1980's the Parallel Command and Decision System (PARCDS)

Laboratory was established to support research for the Navy's Aegis combat system. The

early research involved tightly connected single-processor systems modelling parallel

processing. The following decade brought many advances in computing power, especially

in the field of parallel processing. [Ref.2].

2. The Aegis Combat System

The Aegis Combat System is the most powerful and complex combat system

available to the surface fleet of the U.S.Navy. The Aegis Combat System, designed for

guided missile cruiser, was engineered as an integrated system of computer programs,

sensors, and weapons to provide a multi-warfare capability. [Ref.3].

Aegis consists of three major system components. These are the powerful

phase array multi-function radar, AN/SPY-i, the command and decision system (C&D),

and the weapons control system (WCS). The SPY-I's function is to detect targets, C&D

performs command, control and communication functions. The WCS function is to

evaluate the engagement, provide and execute fire control solutions as well.

Since the technology grows rapidly, the U.S.Navy keeps trying to improve the

flexibility, reliability of the Aegis Combat System by investigating the possibility of

replacing the current components with the new fashion ones. The most important variable

in the development of Aegis Combat System is the reaction time. For example, there was

the investigation of replacing current communication network for the Aegis combat

system aboard Naval ships with dual optical fiber rings and the investigation of replacing

the old expensive AN/UtYK-7 computers with parallel computer networks.
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The next few decades will see the design, development and deployment of the

next generation surface combatant. It will most likely be built upon the current Aegis

computer system architecture, expanding to a well integrated, highly reliable and easily

operable real-time combat system.

3. Transputer Review

The term "transputer" is an acronym for "transistor computer" where it reflects

the ability of this device to be used as a system's building block, much like the transistor

was in the past. The nice feature of the transputer is that it adds a new level of

abstraction, which provides a very simple way to design a concurrent system. As a formal

definition we could state that the transputer is a single-chip microcomputer that has its

own local memory and four communication links. The links may be thought of as small

special purpose processors which steal no cycles from the main CPU, in such a way that

we could have all four links and the CPU working at the same time, without degrading

the performance of the program's execution. [Ref.41.

The transputer is a parallel microprocessor, generally categorized as a Multiple

Instruction Multiple Data (MIMD) computer. This means that transputers are used to

execute different operations on separate data at the same time. A transputer operates as

a stand-alone machine or as a processing element interconnected by its links to from a

computing array, or network of transputers. [Ref.51.

The INMOS IMS T800 transputer includes a fast processor, a floating-point

processor. memory, and communication facilities in one chip. The IMS T800 is designed

for communication in a network of transputers. Each transputer has four link engines,
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each of which supports a bidirectional communications link that operates as a direct

memory access (DMA) channel. Transmission rates of 20 Mbps per link may be achieved

concurrently as the T800 processor continues at high speed. Our estimates are that the

T800 computes at about ten times faster than the AN/UYK-7. According to the

performance measurement of J. Dongarra [Ref.9], the T800 is 2.3 times faster than the

INTEL 80386/80387 combination and four times faster than the MOTOROLA 68020.

B. ENVIRONMENT

1. Hardware Environment

The designed network of transputers which model the Small Tactical System

using the IBM-compatible (Zenith Z-248) microcomputer that hosts the IMS T800 25

Mhz transputer on the TMB 08 motherboard (interface between host transputer and PC)

with four external transputers, as shown in Figure 1.

Figure 1: PC Host with Network of the IMS T800 Transputers
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2. Software Environment

a. ADA Programming Language

The Ada language is currently undergoing revision, Ada 9x as a new

standard Department of Defence (DoD) programming language. Ada will be the standard

language for programming computers that are components in weapons systems. The

language incorporates the latest concepts in algorithmic language design, including

modern control structures, user defined data type, generic units, exception handling, and

the ability to coordinate concurrently executing "tasks".

It is asserted that Ada can be used as a specification tool. This results

from the ability of Ada to allow top-down program development, in which functionality

can be omitted at a high level, only to be incorporated at a later time. In addition, Ada

incorporates control structures for multi-tasking, in which concurrently executing tasks

are coordinated in a special way. Information may be passed among the tasks in a manner

which is independent of the underlying computer architecture. [Ref.71.

b. Alsys-Ada Compilation System

In October 1989, Alsys produced the first compiler capable of supporting

multi-processor programming in Ada. The PARCDS laboratory purchased this compiler

for the transputer systems. Our experience in using the Alsys-Ada compiler's ability to

generate Ada code for a sirgle processor found that the compilation process is a complex

task, ever in the uniprocessor case. In spite of this complexity in this thesis, the Alsys-

Ada is selected to be the compilation tool for Ada programs in a multi-transputer network.
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c. OCCAM 2 Toolset

The Occam 2 toolset is a set of software tools for developing transputer

programs on host systems. Used with the occam libraries, it provides a complete

environment for developing programs on transputers and transputer networks. The toolset

allows Occam programs to be written using any convenient text editor. Application

programs are then compiled and linked using Occam programs resident on the host or

running on transputer board. Self-booting code for single transputers and multi-transputer

networks is produced and loaded from the host system down the transputer links.

d. MAKE Program Maintenance Utility

MAKE is a utility program designed to assist in the automatic updating

and regeneration of computer programs. MAKE provides a specialized script language and

an interpreter designed to facilitate control of the programming environment. MAKE

program automates the process by determining which parts of the program have been

changed since the last compilation and rebuilds them accordingly.

MAKE operates by processing a programmer prepared script file named

"makefile". MAKE executes a list of information provided in the makefile. Makefile

contains entries that describe how to bring a target object code up to date with respect to

those on which it depends, called "dependencies" along with a list of macro definitions

for commands needed to rebuild the modules or programs. This information tells MAKE

which system commands it should issue to process individual files. Since dependency is

a target, it may have dependencies of its own. Targets and dependencies comprise a tree

structure that makes traces when deciding whether or not to rebuild a target.
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MAKE recursively checks each target against its dependencies, beginning

with the first target entry in makefile if no target argument is supplied on the command

line. If, after processing all of its dependencies, a target file is found either to be missing

or to be older than any of its dependencies, MAKE rebuilds it. To build a given target,

MAKE executes the list of commands called a rule. This rule may be listed explicitly in

the target's makefile entry, or it may be supplied implicitly by MAKE.

C. THESIS OBJECTIVE

The basic thrust of this thesis is that the same software running under the old

expensive AN/UYK-7 computer could run equally well in the commercially available

VLSI microprocessors. And as expected, in probably less than one decade, the old

fashioned Navy's standard computers will not be capable of handling the increasing

demand for some more complex software systems.

This thesis is a part of the Parallel Command and Decision System Laboratory,

whose researchers investigate the possibility of replacing the old standard Navy's

computers for the Aegis real-time combat system aboard Naval ships with the network

of transputers in order to reduce the reaction time of the Command and Decision Systems.

The objective of this thesis is to try to keep up with the upcoming new technologies

especially, the TRANSPUTER. The investigation has been made by modelling the Small

Tactical System with the network of transputers, based on the standard DoD programming

language, ADA, as the programming language. The Alsys-Ada compilation system is used

in the designed network of transputers.
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D. THESIS ORGANIZATION

This thesis is presented in five chapters and eight appendixes. Chapter I was the

historical background, the development of the Navy's AEGIS combat systems and the

introduction to the new fashion of the commercial VLSI microprocessor, TRANSPUTER.

Chapter II provides the general idea of the designed transputer network

implementation of the Small Tactical System, and the hardware and software environment

used in the designed network.

Chapter III describes the design of each subsystem in the modelling of the Small

Tactical System. This chapter focuses on the underlying design concepts used in reaching

the objective of each subsystem.

Chapter IV focuses on the software development in Ada by using the Alsys-Ada

compilation system and the Occam 2 toolset. Executing the program on the network of

transputers to perform the functions of the Small Tactical System, and to demonstrate the

communication of data among those transputers through their links.

Chapter V states the conclusions and recommendation for future research.

x



II SMALL TACTICAL SYSTEM MODELLING

A. SIMULATION OF SMALL TACTICAL SYSTEM

1. General Idea

After a target has been detected, the decision is made either to attack or not.

If an attack decision is made, then the target is tracked. A future position is estimated,

and a weapon is launched to intercept the attacker at the predicted interception point. To

clarify the approach, a five transputer network is designed to solve the problem.

2. The Designed Network

The designed network of modelling the Small Tactical System using the IMS

T800 25 Mhz transputer as the host transputer and 4 IMS T800 20 Mhz external

transputer as the subsystems as shown in Figure 2.

Figure 2: The designed Small Tactical System
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To is the host transputer which performs the Human Interaction.

T, performs as the Target Tracker Subsystem.

T2 performs as the Target Prediction Subsystem.

T3 performs as the Ballistic Interception Subsystem.

T, is a hot spare to make the system Fault Tolerant.

3. The Designed network Configuration

The designed multi-transputer network implementation of the Small Tactical

System is required to have the transputer boards as:

- the IMS B417 TRAM (TRAnsputer Module)

- the TMB08 TRAM Motherboard

- the IMS B003 Evaluation Board

the network has been connected as shown in the Figure 3.

Z-248

TMIB 08 BOO

T417
0 T8002 W 23TO

PC 2

T 2o 12 2

LC004

Figure 3: Connection Network of Tra-isputers
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The connection of the designed network is made by using two soft wires. One

is connected the down subsystem from the TMB08 to upload a program at the B003

board and the other one is connected link 2 of the T800 25 Mhz in the TMB 08 board

to link 0 of the first T800 20 Mhz in the B003 evaluation board as shown in Figure 4.

m DN
so[ POWER

i -18 0 0 1

~J 9

EI" 7

E~~J 6I 5
I" 4

3
2

P FE___I
TMB 8 37 pins B003 Connector

D-Type Connector

Figure 4: External Links

When all connections have been made, there is a check program that can check

the connections. Output of the check program will look like below

check 1.21
# Part rate Mb Bt [LinkO Linkl Link2 Link3 ]
0 T800d-25 0.18 0 [HOST 1:1 2:0 ... ]
1 T2 -17 0.90 1[ ... 0:1 ... C004]
2 T800c-20 0.90 0 [ 0:2 ... 3:3 4:2 ]
3 T800c-20 0.90 3 [ ... ... 5:3 2:2 ]
4 T800c-20 0.90 2 f ... ... 2:3 5:2 1
5 T800c-20 0.88 3 f ... ... 4:3 3:2 1

11



B. TRANSPUTER BOARDS

1. The IMS B417 TRAM (TRAnsputer Module)

The IMS B417 is a TRAnsputer Module (TRAM) incorporating a IMS T800

25 Mhz transputer, 64K bytes of static RAM and 4K bytes of dynamic RAM. The 4M

bytes of DRAM is sufficient to run the Ada compiler from Alsys. The IMS B417 is board

level transputer with a simple, standardized interface. The circuit diagram of the IMS

B417 TRAM is shown in Figure 5.

Reset so
T800 d

Analyse 10. 25 Mhz 4 Mbytes

NotError DRAM

LinkO o

Link 1 4 Kbytes 64 Kbytes

Link2 RAM SRAM

Link3

Terminated links

Subsystem SSReset
PAL SSAnalvse

notSSE ror

Figure 5: The IMS B417 TRAM

a. The IMS T800 25 Mhz Transputer

The IMS T800 25 Mhz transputer is a 32-bit CMOS microcomputer with

a 64 bit floating point unit and graphic support. It has 4K Bytes on-chip RAM for high

speed processing, 1 configurable memory interface and four communication links. It is

able to perform floating point operations concurrently with the processor. The 32 bit wide

12



memory interface uses multiplexed data and address lines and provides a data rate up to

40M bytes/s. A configurable memory controller provides all timing, and DRAM refresh

signals for a wide variety of mixed memory systems.

b. Alemory Configuration

The IMS B417 is able to access 4M bytes of memory. This is comprised

of 4K bytes of internal transputer memory, 60K bytes of external SRAM and 4032K bytes

of external DRAM. There are, in fact, 64K bytes of SRAM components and 4M bytes of

DIRAN components on the module, but the address space of each type of memory are

superimposed. Therefore, the total memory available is limited to 4M bytes which is

Nkffieieflt to run Ada compiler product of Alsys. The start addresses of the different types

of Ctcrnal menory on the IMS B417 is shown in table below"

Hardware bytes address

SRAM From # 80001000

To # 800OFFFF

DRAM From # 80010000

To # 803FFFFF

2. The TransTech TMBO8 TRAM Motherboard

The TNIB08 is a TRAM motherboard that enables users to build multi-

tr ,,putcr system that can be plugged into an IBM PC-XT or PC-AT. It has slots for up
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to ten TIRAMs. By using an IMS C004 programmable link switch, incorporated on the

TMBO8 allows a large variety of networks to be created under software control. The IMS

C004 link switch is controlled by the 7212 16-bit transputer. An interface to the IBM bus

is provided so that a program running on the IBM PC can control the TRAMs on the

TMB08 board. Different events on the TMB08 can generate an interrupt on the IBM PC

and the PC can carry on with other tasks while programs are running on the TMBO8. The

diagram of the TMB08 is shown Figure 6.

IBM PC bus

"V itrutIDMA roeM-z C)owt(eeet

(Rese tc. Resei etc~ Ir TRAM C0oo

MS Rst Sunsyster, trof'P AV Dow (RoSu s s :a:-
CO12 ___ ,.,JP2 .- (Reset otc..

0 1 21 Reset t

ii 2 2 aid WS T222 2I2J 11 Pipe Ta,

L L

3 0 3 0 13 0 13

oI-] IMS C004 LUnK swrtcn' Gonrfic PRese: Links

3:

0. resell
IMS lgr

PatchLink0 Z--- - Cronfigx Up T222 ConfigDowri

Figure 6: The Transtech TMB08 TRAM Motherboard

a. The IMS T212 Transputer

The IMS T-) 1 2 integrates a 16-bit microprocessor, four standard transputer

communication links, 2K bytes on-chip RAM, a memory interface and peripheral

interfacing on a single chip. The processor shares its time between any number of

14



concurrent processes. A process waiting for communication or a timer does not consume

any processor time. The T212 use a DMA block transfer mechanism to transfer message

between memory and another transputer product via links. The link interface and the

processor all operate concurrently, allowing processing to continue while data is being

transferred on all of the links. The 2K bytes of static RAM provide a maximum data rate

of 40M bvtes/s with access for both the processor and link. The T212 can directly access

a linear address spaces up to 64K Bytes, and has a 16-bit wide data bus and a 16-bit wide

address bus, non-multiplexed, providing a data rate of up to 20M bytes/s, and supporting

word or byte organization.

b. The JAIS C004 Programmable Link Switch

The IMS C004 device is a transparent programmable link switch designed

to provide a full crossbar switch between 32 link inputs and 32 link outputs. Any of 32

links may be connected to an,, other by sending the appropriate control data to the IMS

C004 along its configuration link. The configuration link of the IMS C004 is connected

to an INIS T212 transputer. Configuration data for the IMS C004 is fed into link 1 of the

IMS T212 (ConfigUp), which then passed it on to the IMS C004 on link 3. The same

data is also passed out of the IMS T212 through link 2 to the edge of the TMB08 board.

C. The IMS C012 Link Adapter

The IMS C012 link adapter is a universal high speed system interconnect,

providing full duplex transputer link communication by converting bi-directional serial

link data into parallel data stream. The IMS C012 provides an interface between an
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INMOS serial link and a microprocessor system bus. Two interrupt outputs are provided,

one to indicate that input data is available and one for output buffer empty. There are two

link adapters in the TMB08 board, one connects between PC and the MS B417 TRAM

and the other one connects between PC and the IMS T212 transputer. In the TMB08

motherboard, the status of the registers of IMS C012 are continuously polled by software

running on PC.

3. The IMS B003 Evaluation Board

The IMS B003 evaluation board (T800 20 Mhz version) is a double extended

Eurocard containing four T800 20 Mhz transputers. The four transputers are synchronized

by using the same clock in the logic shared, as shown in the Figure 7.
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a. The JAIS T800 20 Mhz transputer

The IMS T800 20 Mhz transputer is a 32-bit microprocessor with a 64

bit floating point unit, four standard transputer communications links, 4K bytes of on-chip

RAM and a memory interface on a single chip. The T800 20 Mhz provides high

performance arithmetic units and microcode support for floating point operations. The

processor shares its time between any number of concurrent processes. The link interfaces

and the processor all process concurrently, allowing processing to continue while data is

being transferred through all of the links. The 32 bit wide memory interface uses

multiplexed data and address lines and provides a data rate of 26.6M bytes/s. The IMS

T800 20 Mhz is pin compatible with the IMS T414 20 Mhz, if the additional inputs of

the IMS T800 are held to ground. The IMS TS00 20 Mhz can thus be plugged directly

into a circuit designed for a 20 Mhz version of the IMS T414. Software should be re-

compiled, although no changes to the source code are necessary.

b. Links

The transputers on the board are connected in a square, the square has

rotational symmetry, with link 2 of each transputer connected to link 3 of the next

transputer. Link 0 and link I of each transputer are taken to the edge connector. The

speed of communication between links for internals on board running at 20M bits/s, while

Link Os are connected off the board and running at IOM bits/s. Alternatively, all the links

may be set to run at IOM bits/s or 20M bits/s. But if running external links at 20M bits/s,

the link connections have to be short. The link connection to the B003 board depend on

the designed program.
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C. THE ALSYS ADA COMPILATION SYSTEM

The Alsys Ada Compilation System consists of the Compiler and Binder, operating

in the Alsys Multi-Library Environment. The Compiler generates executable code for T4

or T8 transputer targets. Multi-Library Environment provides a powerful way of managing

Ada development efforts. It allows compilation units to be flexibly shared among

libraries, and eliminates the need to copy library units to share them, along with the

associated version control problems.

1. The Compiler

The Compiler requires two names as input: the source file, which contains the

Ada source code and a program library in which to place the compiled object units.

Compilation units in the source file must be specified in a valid order such that if a unit

depends upon other units, then those other units must come before that unit. If the order

of the units is invalid, or if a unit named in a with clause does not exist, the Compiler

will issue an error message and the compilation will fail. The output from the Compiler

normally consists of an update version of the designated program library, containing the

compiled object code for the units included in the source file and a compilation listing

detailing the results of the compilation.

The compilation listing always includes diagnostic message for any errors

detected during compilation. There are options to include in the listing both the source

code of all compiled units and the object code. The listing may be sent to a standard

output device or a file to which the listing is to be written. Alternatively, the compiler can

perform an error analysis without generating any object code. If this is the case, only a
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a compilation listing will be produced and the program library will not be modified in any

way. The error analysis can be restricted to syntactic errors only, or both syntactic and

semantic error analysis can be requested.

2. The Binder

The Ada Binder combines the required units of an application program into

an object module. The input to the Binder consists of an Ada program library containing

the main unit of the Ada program and the name of the main program unit within this

library. The Binder uses the main program name supplied together with the dependence

information in the program library to find the compilation units needed by the program.

Other related units can be contained in other libraries to which links are established from

the current library (these related libraries may then refer to future libraries and so on).

The Binder produces two files as output: an object module containing the code

and data for all the Ada compilation units included in the program. Default name is

"pro gram.O" and a listing of file ,'immarizing the results of the binding process. The

default name of this file is "programn.BND". The listing file includes any error message

output by the Binder. The listing may optionally include information and warning

message, information about the composition of the program, the elaboration order of the

program's compilation units and the names of any subprograms which are uncalled in the

program and have thus been deleted. If names are not specified for the Binder output file,

default file names based on the main program name will be used. If errors are detected

during binding, no object module will be produced.

19



3. Linking, Loading and Executing

The tasks of linking, loading and execution are performed using programs

provided as part of the Occam 2 toolset, a set of tools supplied by INMOS to aid with

the development of transputer based applications.

a. The Occam 2 Toolset

There are a number of different implementations of the toolset running

on a variety of host computers. However, the basic facilities provided by the toolset are

the same regardless the implementation. The tools which are of particular interest are:

iink, collects together all the code for a program resolving.

iboot. A tool which adds a bootstrap code to link programs prior to

loading the program on a single transputer.

iconf. A tool which configures a program prior to execution on

multi-transputers network.

iserver. The host server, loads bootable program onto a processor.

This implementation of the toolset uses particular command line syntax

and file naming. The file naming conventions are particularly evident in the area of file

nanme extensions. Most extensions are composed of single letter code followed by two

additional characters, where the single letter identifies the nature of the file:

.c.u-v Linked code files, the output of ilink.

."LY-V Module map produced by ilink.

.h Bootable code file, the output of iboot.

.duc Bootstrap code description produced by iboot.
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The additional characters (x-) serve to identify the transputer type and

error mode of compilation. For the Alsys Ada, the error mode used is STOP process (s)

mode, so the second additional character is always an "s". The processor type can be any

one of "4", "5", or "8" corresponding to a T414, a T425, or any T8 transputer target.

b. Program Linking

For a system of multiple Ada programs, or a system of programs running

on multiple transputers, it is likely that you will have to invoke the linker directly rather

than have the Binder do this. Linking is accomplished using the ilink tool. The linker is

given the names of any' separately compiled object or library files and produces a single

object file which can then be loaded onto a transputer system. ilink accepts commands

with the following syntax

ilink { inputfile } ( option }

For the current implementation the complete list of input files which must

be supplied to the linker in addition to the Binder output file is as follows:

" harness.t8s. The occain harness used to invoke the Ada program.

* adarts8.lih. A library of routines which form the part of the Run

Time Executive which has not been implemented in Ada.

0 occam8s.lib. The occan compiler library which is provided as the

Occam 2 toolset for some of the occam routines in adarts8.1ib to reference.

0 hostio.lib. Another library from the Occam 2 toolset, it provides

access to the facilities of the iserver,
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c. Program Loading and Execution

Although the linker produces a single object file, there is still a step

required before the program can be executed. It is necessary to distributed the program

among the network of transputer. For multi-transputer programs, executable code is

produced using the configuration tool iconf.

D. THE ENVIRONMENT OF AN ADA PROGRAM

1. Interface to Host System

All access to the services of the host MS-DOS operating system is via an

interface conforming to the INMOS file server. The server is used to invoke a program

to be run on the transputer and continues execution on the host (MS-DOS) while the

program is running.

Communication between the server and the program is via a pair of channels;

one channel is used for requests by the program and the other for responses from the

server. For single processor programs these channels are passed as parameters to the

program. For multi-processor programs, the channels are accessed via the physical links

on the root transputer. Although the server is a single resource which can only be used

by a single process running on the root transputer, it is possible to share the server

resource using a multiplexor process. The multiplexor takes the channels request from

many processes wishing to use the server and maps them onto the actual server channels,

ensuring that the communications between the server and its clients do not overlap.
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2. Interface to Other Languages

a. Ada Program Interface

An Ada program may be called in much the same way as a normal occam

procedure. All Ada programs conform to the following occam specification:

PROC Alsysadaentrypoint ([] INT wsl, in out, ws2)

The name "Alsysadaentrypoint" is the default entry point name of an Ada

program. The default occam harness contains a #IMPORT directive referring to the file

alsvs.tax which consists of a dummy occam procedure conforming to the above

specification. This technique allows the default occam harness to be used with any Ada

program, avoiding the need to change the #IMPORT directive and thus re-compile the

harness for each program.

It is possible to specify an alternative entry point name using the Binder

option ENTRYPOINT. When this option is used together with the Binder option

LEVEL=BIND, a customized occam harness can include a #IMPORT directive referring

to the output file of the Binder (the ".0" file) and invoke the Ada program using the entry

point name specified.

The in and out parameters are vector of pointers to channels going to and

coming from the Ada program. If there is a single workspace (that is, there is no stack

memory), the wsl parameter is used as the main workspace and the ws2 parameter is

unused If there are two workspaces, the ws parameter is used as stack memory and the

w2 parameter is used as the main workspace. Stack memory is an area which is assumed

to map onto the low-addressed fast internal memory of the transputer. If insufficient
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workspace is passed by the occam harness, the Ada program will be terminated

immediately and a message issued along the error channel. Four of the channel parameters

of an Ada program are reserved for use by the run-time system:

" out[O] is used as an error channel.

" in[O] is reserved although currently unused.

" out[ I] is used for the requests from the Ada program to the server.

" in[ 11 is used for the communication of responses from the server.

All Ada input-output operations are accomplished by issuing requests to

the server and therefore make use of the channels reserved for such communication. The

following routines from the host file server library, hostio.lib, are potentially called from

a program using the predefined input-output package of Ada:

so.open, so.close, so.read, sowrite, so.gets, so.puts, so.remove, so.time

Note that the standard input and standard output files of TEXT_10 are

mapped onto the standard input and standard output streams of the server. The error

output from the Ada program is treated as a special case and is directed to the error

channel rather than making use of the server directly. Severe error situations are reported

along this channel, including program deadlock and the unhandled exceptions.

b. Occam Calling Ada - the Occam Harness

In order to integrate Ada with other languages a well defined interface

is required. Although the Ada program interface is adequate, a simpler interface is

possible if the program could be treated as a true occam process. Ada programs may then

be run in parallel on a single processor or distributed across a multi-transputer network,
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just as occam processes. To achieve this simplicity of interface, an occam process called

a harness is used as a wrapping for the Ada program. A default occam harness is

provided as part of the Compilation System in both source and compiled forms. The main

body of the harness consists of three processes operating in parallel:

* A multiplexor which combines the error output and the output of

the Ada program. This process is provided as part of the server library, hostio.lib.

- An error channel collector which collects any output from t, e

error stream and routes it to the standard output stream of the server via the multiplexor.

m A process which sets up the input and output channel vectors of

the Ada program and then invokes it, informing the other processes upon compilation.

When all three processes have terminated, the server itself is terminated

and control is returned to the host. It should be note that the default harness is suitable

only for single Ada programs running on single transputers.

3. Communication Using Transputer Channel

An Ada program can communicate with any other program using transputer

channels via the implementation defined package CHANNELS. This program could be

running on the same transputer. or on one of its neighboring processors. The CHANNELS

package provides access to the channel parameters of the Ada program and to the

physical links of the processor on which the program is running. A generic package

w ithin CHANNELS provides facilities for communication between programs by using

READ and WRITE operation on channels.
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a. Using Internal Channels

Channels mapped to transputer links are known as hard channels.

Processes communicating with each other on the same transputer use internal channels,

known as soft channels, implemented in the transputer's memory. These internal channels

are represented in Ada by objects of the type CHANNELTYPE declared in package

CfHANNELS. Any number of such channels may be declared ir an Ada program and used

for communication between tasks.

b. Accessing Physical Links

Access to physical links and the event pin of the transputer on which the

Ada program is running via the channel contents declared in package CHANNELS.

c. Communicating Data Across Channels

Channel communication can be achieved using the READ and WRITE

procedures of the generic package CHANNELIO, instantiated with an appropriate type.

The following points should be noted when using CHANNEL_10 for communication:

0 Objec, of a task or private type or records containing components

of such types should not be passed into or from an Ada program.

a Representation and length clauses should be used to control the

layout and size of record objects when communicating with a non-Ada program.

* When a channel is used for communication between two Ada

programs. common packages should be used to ensure that each of the programs has a

consistent view of the data passed between them.
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III. SUBSYSTEM DESIGN AND DEVELOPMENT

A. SINGLE TRANSPUTER SYSTEMS

In the first step of Small Tactical System development, it is necessary to ensure that

each subsystem is done correctly. The single transputer system is used to test each

subsystem separately.

For single transputer systems, the major issue in the design is that of sharing

,esources. The resources of a single transputer system are the processor, memory and the

server. The occam programming model consists of a number of processes executing in

parallel and communicating by the use of channels. The processes which constitute a

system may be executing on the same transputer. As a consequence of the model, it is

possible for several programs to share the resources cf a single processor. Since an Ada

program does not interfere with the shared components of the system, one or more Ada

programs could form the system. However, the performance (cost) of an Ada program

should always be taken into account in the design of a single processor system.

A single transputer system is invoked as a single program (a harness) which is

passed to two areas of free memory: a work space and an area of stack memory. It is the

responsibility of the programmer to divide these workspaces as appropriate. The

workspace allocation is provided in the harness "main.occ" in APPENDIX F.

To implement an application on a single transputer involves four logical steps:

Soulrce Compilation. Object linking. Configuring, Loading and Running.
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1. Source Compilation

All application source must be compiled for the target transputer. The Alsys-

Ada compilation systems permit separate compilation of source units. Once all source

units have been compiled, the application can be linked.

a. Source of Occam Harness

The default harness is inadequate only in case where additional channel

parameters need to be passed to the Ada program. Each Ada program has its own "mini-

harness" which provides a clean interface to the program in terms of the channels used.

The main harness is used to invoke each of the mini-harnesses in parallel. Source of the

occam harness must have the extension ".occ".

b. Source of Ada Program

All the code written in Ada can be run on a transputer using the Alsys-

Ada Compilation system. It can support any standard package written as an Ada program.

The application Ada programs must have the filename extension ".ada".

2. Object Linking

For a single Ada program rinning on a transputer, invoking the Binder alone

should be sufficient to produce an object file named "proj.o". Following source

compilation. the object binaries are linked together with the relevant run-time library and

a proprietary occam support harness. Linking is accomplished using the ilink tool. The

linker is given the name of any separate compiled object or library files and produce a

single object file which can then be loaded onto a transputer system. The support harness
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ensures that the application has correct access to the server running on the host platform.

The problem which may occur when linking a program for execution on a single

transputer is that of name conflict. For Ada programs, this problem can be avoided by

changing the entry point name of the program using the Binder option ENTRYPOINT.

3. Configuring

Although the linker produces a single object file, there is still a further step

required before the program can be executed. It is necessary to configure the program to

prepare it for execution on the target transputer system. Configuratio. c.- a single

transputer system involves adding bootstrap code to the program using the iboot tool. The

bootstrap code initializes the processor, allocates workspaces, loads the program code and

finally invokes the program. A program invoked by the bootstrap loader should conform

to the following specification.

PROC main.program (CHAN OF ANY from.server, to.server,
[lINT workspace, stack.memory)

The from.server and to.server parameters are the channels used by the host file

server to boot the program and may be used for communication with the server by the

program when it is running. The workspace and stack.memory parameters are areas of

free memory for use by the application program.

4. Loading and Running

The file produced by ihoot, which contains the final executable program and

bootstrap code, can be loaded onto the target transputer using the host file server, iserver.

The sequence of operation on a single transputer is shown in Figure 8.
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Figure 8: Sequence of operation on single transputer

The following commands, provided in Makefile, are used to build and run the

system of Ada programs. It is assumed that the Ada programs have already been compiled

and bound such that the object code is available in the file "proj.o".

-- Compile separate occam processes.
occam /s/t8 merger.occ
occam/s/t8 projh.occ
ccam/s /t8 projh2.occ
ocam/Is /t8 main.oc

-- Fully link a single step.

ilink/If main.lnk

--Add bootstrap code.
iboot main.c8s

-- Load and run the program.
iserver /sb main.b8s
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B. HOST TRANSPUTER

1. General Idea

In the combat system, during target engagement by a high performance aircraft

or missile, it is critical that the man/machine interface by kept very simple. The display

should provide sufficient information with low complexity. Thus, the designed host

transputer should perform the communication between the network of transputers and the

PC. The system communicates with the operator by keyboard and the monitor screen.

2. The Transputer / PC Host development relationship

The transputer is normally employed as an addition to an existing computer,

referred to as the host. Through the host, the transputer application can receive the

services of a file store, a screen, and a keyboard as shown in Figure 9.

To Other Transputer

PC Host t

server ROOT

Screen to.server RNPTR*

Keyboard Loal Har Disk To Other Transputer

Figure 9: The transputer / host development relationship
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The transputer communicates with the PC host along a single INMOS link. A

program, called a server, executes on the host at the same time as the program on the

transputer network is run. All communications between the application running on the

transputer and the PC host services (screen, keyboard and filing resources) take the form

of messages. Software written with the Occam toolset and Alsys-Ada compiler, to use the

standard INMOS servers, assumes master status in a master/slave relationship between the

transputer and PC host. In this situation, messages are always initiated by the transputer

system. The root transputer in a network is the transputer connecting to the host bus via

the link adapter as described in Chapter II.

3. The Development

The main objective of the Host transputer is to communicate with the PC Host.

This section considers the simplest porting situation for an application. Before the porting

to transputer the application look like Figure 10.

Original Host Computer

SApplication *~

Keyboard Local Hard Disk

Figure 10: The starting point
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No assumptions are made about the nature and capabilities of the original

compute engine, except that the application uses only keyboard, screen and file system

through standard function calls to the language's run-time library.

When porting to transputer the application is to be lifted from an arbitrary

computer system, and executed on a single transputer connected to a supported host

platform as shown in Figure 11.

PC Host TRANSPUTER

Scento.server Support

Apcation

Keyboard Local Hard Disk

Figure 11: The entire application on single transputer

The PC Host runs a simple program called "server" which ensures that the

access requirements of the application in terms of keyboard, screen, and filing, are fully

satisfied. The Occarn 2 toolsets use a server called iserver. The from.server and to.server

parameters are the channels used by the host file server to boot the program and may be

used for communication with the server by the program when it is running. This server

is not recommended for use with application port. The program that controls this

operation is in the file main.occ in APPENDIX F.
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C. TARGET TRACKER SUBSYSTEM

1. General Idea

In the Navy's Aegis combat systems, a complex real-time radar surveillance

system that keeps track of target position, should have a software that supports this

operation, package PLANETRACKER. It should be able to handle up to 512 planes at

a time and provide subprogram to query and update plane positions and velocities. Every

time a new plane is detected by radar, PLANETRACKER is instructed to start tracking

the plane. It is also informed when to discontinue the tracking and should raise exceptions

when it cannot handle anymore planes or when an untracked plane is referenced. The

specification of a package that is able to handle all the requirement above is:

with CALENDAR;
package PLANETRACKER is

MAXPLANE : constant := 512;
type MILES is new FLOAT,
type MILESPERHOUR is new FLOAT;
type PLANEINFO is record

X.Y,Z : MILES,
VX.VYVZ: MILESPERHOUR:
T: CALENDAR.TIME;

end record:
type PLANEID is limited private;

procedure CREATEPLANE (I:PLANEINFO ID:out PLANEID);
procedure REMOVEPLANE (ID:in out PLANEID):
procedure UPDATEPLANE (ID:PLANEID; I:PLANEINFO);
function READPLANE (ID:PLANEID) return PLANE INFO:

ILLEGAL PLANE,TOOMANY_PLANES : exception;
private

type PLANEID is new INTEGER:

end PLANETRACKER:
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2. The Tracked Data Simulation

In principle radar system, the procedure of track radar is that the transmitter

sends the electromagnetic enigy : the target and the receiver receives the echo from that

target. The echo information contains the positions and velocities of the target. The

processing of the echo information gives range and direction of the target. Due to this

principle the tracked data simulation should simulate the echo information.

In order to simulate the tracked data which is required for the Prediction

Subsystem, the target trajectory approximation that keeps updating the new position of

the target is selected. First, by mathematics, the comparison between Trapezoidal rule and

Simpson's rule of integration has been investigated.

a. Trapezoidal Rule

For any trajectory along function y = f(x) from point a to b. the positions

in the interval [a,bI can be approximated by the sum of the trapezoids. By dividing the

interval [a,bJ into subintervals of equal length a x = (b-a)/n and denote the end point of

the subinterval by a =x,, < x <x,<... < x. = b then

fb b -a 1Ofx)2x,..2t,

tx)dx - 2x 1)+2x ... 2f _)+ Ax,))
n

and the error for the Trapezoidal Rule is

(b-a)3M

12n 2

where %I is the maximum value of If'(x) I on the interval [a,bl
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b. Simpson's Rule

The Simpson's rule uses parabolic arcs rather than line segments. By

dividing the interval [a,b] into n subinterval (n must be an even integer) with Ax = (b-a)/n

and denote theendpointsx 0 a,x,=a+Ax,x2 = a+2 x .... a+nAx=b then

f.lx)dx - ftxo) +4ftxl) +2tx2) +4ftx)+... +2fx -2) +4Alx _) 1) +X.)3n

and the error for the Simpson's Rule is

(b -a)5M
180n

4

where M is the maximum value of If'(x) , the fourth derivative, on the interval [a,b]

C. The method of simulation

The Ada code in APPENDIX A computes the aircraft locations by using

Irapezoidal rule and Simpson's rule of integration. It compares the results with the

observed long-range radar location and computes error values for each integration method.

This program assumes that the aircraft flies back and forth from the position X = 5000

ni, Y = 0 m to the position X = 0 m, Y = 50() m at the altitude of 4000 m. Time of

flight is 30 second. The function TRAPEZOIDAL and SIMPSON in this program perform

the numeric calculation using Trapezoidal rule and Simpson's rule respectively. Output

of this program shows that the position errors of using Simpson's rule are always almost

zero when compare with the errors of using Trapezoidal rule. This leads to desire to use

Simpson's rule to simulate the tracked data rather than Trapezoid rule because it produces

more accurate simulated data.
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3. Tracked Data

The Ada code in APPENDIX B produces the simulated tracked positions of

the target in three dimensions every one second. In real world, the target also has the

velocities in three dimension and those velocities can be changed all the time because of

the gravity, wind speed, etc. In this program assumed that the target approaches with

acceleration until it reaches its maximum speed, and then all the velocities remain

constant. The output shows the positions and velocities of the target every second.

Since the Prediction Subsystem required the three dimensional data at least

seven previous position values, the simulation of tracked data should produce the three

dimensional position data and send the seven vectors of the three dimensional position

values to the Prediction Subsystem in the same time. And also in order to keep updating

the prediction it should send the array of data that updates the new value of tracked data

every second to the Prediction Subsystem. Now the output of the Target Tracker

Subsystem in APPENDIX B is not sufficient to meet this requirement. The Prediction

Subsystem needs only the position values and it needs seven previous values in each

dimension every second. By modifying the code in APPENDIX B, the first seven outputs

are collected and send out in form of array in the same time. When the newest simulated

data is produced it will update the value in the array as shown in APPENDIX C.

The Ada code in APPENDIX C shows the output of simulated data, but before

running the Target Tracker Subsystem in the transputer network the only thing has to be

modified is the output. In stead of printing out, just send these data to Prediction

Subsystem using transputer communication links.
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D. TARGET PREDICTION SUBSYSTEM

When the Tracker Subsystem keeps tracking the target and updates every one

second, we want at least seven target's previous positions (xoy 0,Z0),(x1,y1,z1), ... (x6,y6,z6 )

to predict the future position of the target by using the Least Square Orthogonal

Polynomial to fit the path line of the target in the sense that the sum of the square of the

distance from the curve orthogonal to each plane position is a minimum.

The special case of the estimation of linear parameters uses a linear combination

of orthogonal polynomials to fit a smooth curve to a set of points with evenly spaced

abscissas. A set of orthogonal polynomials commonly used for this purpose are the

discrete Legendre Polynomial O,(t), which satisfy the orthogonal relation

i Oj,,(t)O(t) - 0 (j~k)
t-O

One form of the discrete Legendre Polynomials for the evenly time-spaced abscissas

t = 0,1,2...,n is a set of O(t). The general formula for the kth-degree (k < n) discrete

Legendre Polynomial is

OkA(t) = Hy

where the binomial coefficient

() k

= j! (k-j)!

t= t-1)(t-2)...(t-j+ 1), tl = 1

n"= n(n-1)(n-2)...(n-j+ 1), no) = j
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It is important to note that t has only integer value 0,1,2,...,n. So, a general form of

O (t) are enumerated below

Oo,(t)

O,(t) = 1-2(-)
n

O,(t) = 1 -6(-)+6()(t-)
n n n-1

O3 (t) 1 - 12() 30 2()t t-20 - ) )
n n n-1 n n-1 n-2

By using seven previous positions (i.e. from time t = 0 to t = 6) of the target from

the Tracker Subsystem, so t = 0,1,2.3,4,5,6 and n = 6. Therefore, the value of the first

four Legendre Polynomial 0,,(t) are given in table below.

0, 016 026 036

0 1 1 1

4/6 0 -1

2 1 2/6 -3/5 -1

3 1 0 -4/5 0

4 1 -2/6 -3/5

5 1 -4/6 0 1

6 1 - -1
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Another useful property of the discrete Legendre Polynomials is the following

Ry O,.(t) = (n +k+ 1)(n +k)(k)

,=o (2k + 1)(n)(k)

where (n+k)In ) = (n+k)(n+k- I)...(n+1)

(n )k) = n(n-1)(n-2)...(n-k+1)

By setting fk(t) = Ok(t) ic expression above, we obtain linear combination of the

Legendre Polynomial of the form

F(t) = a,,O0,(t) + alO1 (t) + aO,.(t) + ... + a.,O .(t)

And residuals, Q. are defined by the relation

r, = F(t) - y, (t = O.n)

Therefore, the coefficient a,. a .  a, are determined such that the sum of squared
rSiduals Q = V r,2 -F ,t) is minimized

The normal equations obtained by setting the partial derivative aQ/D - aQ/aa =

...= 3Q/Da,, = 0, reduce to the form

OL(O 0 .... 0 ao  ,=o

0 O (t) .... 0 01(t)ytIn-0 al t O

0 0 .... E O(t) arO
(t0
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Because of the orthogonal property the coefficient ak(k=O,m) which produce the

minimu1,, Q are the solutions of the normal equations above ; these solutions are

o, (tly,

ak r (k-- O,m)

To evaluate the unknown function at points other than the mesh points, each

orthogonal polynomial of the linear combination, F(t) = a0,(t) + a1O1n(t) + aO 2 (t) +

+ ainOro(t) is replaced by its power of t representation, giving

t t t
F(t) = a.[1] +a,[1-2(-)] +a 2 [1_6(-)+6 t(t+)

n n n (n-l)
+ . M ( *I t t)+ ( 2) (t-1,\ +. ..

.. .a. 1 ( ) "1) n 2(7) n  (n -1)

Therefore, the time dependent function that approimate the path line of the target

scparateiy in three dimension is introduced, X(t), Y(t) and Z(t).

The Ada code in APPENDIX D performs the Prediction Subsystem. This

program requires seven inputs of position value in each dimension which come from the

Tirecr "Tracker Subsystem via transputer communication link and produces the orthogonal

cociticientr. Function ORTHOGONAL performs the numeric calculation of orthogcnal

Polynomial and function COEFFCAL performs the calculation of the coefficient a, al,

and a, that satisfied the sum of residuals square is minimized. Now we can fit the path

line of the target with the Polynomial of order 2 and can predict the future positions of

the taret at anytime t.
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E. BALLISTIC INTERCEPTION SUBSYSTEM

The predicted path line of the target is sent from the Target Prediction Subsystem

in term of the position function depend on time in three dimension are

X(t) = ao + at + a2t2

Y(t) = bo + bit + b2
2

Z(t) = CO + c~t + c2t2

The actual values which are sent through the transputer link are just the value of

the coefficient (a,,al,a 2), (bo,bl,b 2) and (cO,cX1 ,c2). The main objective of the Ballistic

Interception Subsystem is to compute the interception time.

1. Distance to the target

Since the Interception SubsysL..... eceives the coefficient values from the

Prediction Subsystem, the first value is the constant coefficient of the polynomial, the

second value is the coefficient of the polynomial first order and the third value is the

coefficient of the polynomial second order. The distance in each direction at any time t

is known by substituting value of actual time t in the form

X(I=t) = ao + art + at 2

Y(t=t) = b0 + bit + br

Z(t=t) = co + c1t + c'r

And the overall actual distance to the target at time t is

D = X-2(t)+Y(t)+Z2(t)
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2. Interception Time

The time calculation is simply that time equal to distance divided by speed.

Also the interception time equal to the distance to the intercept point divided by speed

of the ammunition. The interception time is the actual time when target was detected plus

the time required for the bullet to go to interception point. So, the interception distance

in each direction is known by substitute the value of t with t = t+tor

X(t~t+t ) = ao + al(t+tf) + a2(t+t, oy

Y(t=t+t,01 ) = bo + b1(t+t0 ) + b2(t+to)2

Z(t=t+t) = Co + c/(t+t ) + c2(t+to)2

And the overall interception distance at time t+ttof to the target is

D -- _ _X2(t+t )_+_ (t_-_ _tt

In this thesis assume that the speed of the ammunition is constant equal to

2000 rn/sec, and also assume that the trajectory of the bullet is the straight line. Therefore,

the interception time is known by interception distance divided by 2000.

F. HOT SPARE

1. Fault Tolerance

It is not just desirable, but often essential, to support both safety (guarantee of

not happening) properties and reliability (guarantee of happening) properties. Since system

elements may fail, it is important to support the tolerance of such failures in both safety

and reliability objectives. Fault tolerance deals with handling faults by restoring either full

or reduced capability. Faults may have been foreseen but are not desired or controlled.
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They may occur in any combination at unpredictable times and may require quick

recovery, particularly in the real-time Combat Systems. Even if fault avoidance techniques

applied in the designed phase can reduce the probability of faults but never eradicate

them. Consequently there is the need to tolerate hardware faults during run-time so as to

continue execution and preserve data integrity.

a. Hardware fault tolerance

Hardware faults vary in scale and duration, from transient memory faults

to the failure of multi-processor node. Recovery from faults may be based on reloading

and restarting lost processes. As parts of the system fail it may become unable to satisfy

all the requirements of the application. Techniques for graceful degradation may be very

useful to ensure that critical activities do not fail. Graceful degradation deals generally

with reduced capability. When the system has a graceful degradation capability, its

downtime for repair is short, uninterrupted operation is longer, unavailability periods are

short, and overall processing power is not seriously affected by failure. In a multi

processor system, graceful degradation can be achieved by re-configuring the system:

switching out the faulty hardware or software and switching in the assumed good

hardware or software, or masking the fail item: not using faulty hardware or software.

b. Software error tolerance

Software errors may be the result of residual design faults. Ada was

designed to reduce residual design errors by encouraging highly modular and ,tructured

software design through the use of functional decomposition, information hiding and
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strong type checking. Nevertheless software errors will occur in Ada programs. As with

faults, error must be tolerated during run-time. The main requirements are similar, namely

to continue execution, to preserve data integrity and to prevent the propagation of

erroneous results. Two main techniques have been developed for software error tolerance,

where errors are assumed to arise from design mistake, recovery blocks (Randell 1975)

and N-Version programming (Chen & Avizienis 1978). These techniques are concerned

with sequential programs and so are not effected by the organization of distributed Ada

programs as communicating sequential processes.

2. Small Tactical System Fault Tolerance

Any system using more than one processor can have a fault-tolerant feature.

This thesis concerns only the hardware fault tolerance. In the designed Small Tactical

System one of the T8O 20 Mhz transputer in the network is used to support the tolerance

of such failures in the system. There are two cases of system failure that can occur

frequently, loss of communication and transputer failure.

a. I oss of communication

The network of transputer whose links are connected through two crossbar

switches. The links can be removed and/or inserted while the system is running. When

the link is removed, the system looks for another link between the transputers that need

to communicate and sets the crossbar switches to facilitate the needed communication.

Thus, the fixed communication links are able to be replaced vth dynamically assigned

links for direct communication between transputers. These crossbar switches are
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controlled by a single transputer that takes communication requirements from each of the

other transputers in the system.

b. Transputer Failure

If an entire transputer node is fail, then every task that was executing on

that node will have to be restarted. For each task to be restarted, it is necessary to recover

the data of that task from some other transputer node. In the designed network of Small

Tactical System, when one of the transputers in the network fails, one of transputer in the

network, the HOT SPARE, should reload the software of the failed transputer and

performs the same operations as the failed transputer.
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IV. SMALL TACTICAL SYSTEM DEVELOPMENT

A. GENERAL

This chapter describes how to design and develop an Ada system for multi-

transputer network as an efficient set of communicating programs with respect the data

communicated between the programs especially the set of floating point number. The

goals are to develop the Ada programs that perform difference task and run separately on

each processor, which sent the computed data to the other programs. Specific details

concerning the use of occam harness for the set of programs on each processor, and

configuration descriptions for the iconf tool in the Occam 2 toolset.

B. MULTI-TRANSPUTER SYSTEMS

The Small Tactical System can be modelled by placing the different Ada program

represented the task of each subsystem onto each transputer of the designed transputer

network. The general idea of multi-transputer systems should be considered.

The main issue in the design of multi-transputer systems is that of configuration:

the allocation of processes to a network of interconnected processors. Currently, the only

possible distribution is static distribution; there is no explicit support provided in the

Occam 2 Toolset for the dynamic allocation of processes to processors.

Since an Ada program may be considered as a process, Ada programs may also be

distributed using the configuration tools supplied with the Occam 2 Toolset.
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To implement an application on a five transputer network, involves four logical

steps: Source Compilation, Object linking, Configuring, Loading and running.

1. Source Compilation

a. Source of Occam Harness

For multi-transputer systems, the task of configuration is greatly

simplified if a harness is supplied for each processor. A major advantage of this form of

harness structure is that the program to be run on each transputer is given a clean channel

interface; the parameters of each harness are channels which will eventually be mapped

onto physical links. Since the network is connected to host transputer using only a single

link, The PROJM program is allocated to the root processor, the PROJI, PROJ2, PROJ3

and PROJ4 programs are allocated to the remote processors. The main harness is used to

invoke PROJO program and deal with communication with the host. Source of the occam

harness must have the extension ".occ".

b. Source of Ada Programs

Single Ada programs cannot be distributed across a network: all tasks in

the program execute on the same transputer. However, tasks in independent Ada programs

can communicate using transputer channels via the implementation defined package

CHANNELS. It is important that all processes in a transputer system complete their

application processing cleanly. This causes control to be return to the PC host operating

system and allows the system to be re-run without re-booting the network of transputers.

The application Ada programs must have the extension ".ada".
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2. Object Linking

Prior to configuration, all object binaries for each processor must be fully

linked together. Linking is accomplished using the ilink tool. The linker is given the name

of any separate compiled object or library files and produce the single object file where

can be loaded onto each transputer in the network.

3. Configuring

Configuration is achieved using the iconf tool which takes a configuration

description and produces an object file suitable for booting into a network of transputers.

The purpose of the configuration description is to allocate code to processors and map

channels used in the programs to physical links. The configuration description reflects the

physical interconnection of the processors in the network. The root transputer is a T800

25 Mhz which connected via a single link to a network of 2 T800 20 Mhz processors.

The configure uses the configuration description to determine the topology of

the network bv analyzing the allocation of channels to physical links. Processor 0 is

assumed to be the root transputer of the network through which the network is booted.

There must be a route via transputer links from the root transputer to all other processors

in the network. The following points should be remembered:

" All code used in a configuration description must be fully linked. There can be no
explicit or implicit references to libraries.

" Any legal occam code may be written under a PROCESSOR statement. However,

all code within these statements must be compiled in the same error mode and for
the same processor type as specified in the PROCESSOR statement.
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" Configuration channels must be placed on an input link on one processor and an
output link on another processor. Channels placed only once are called dangling
links; the configure produces a warning if such channels are used. Note that the
channels used for communication with the server are dangling links since they are
placed only once on the root processor.

" The same separately compiled program may be run on any number of processors;
one copy of the code exists in the configured code and this is loaded onto each
processor which requires it.

The default file extension for configuration description is ".pgm", the source

of the configuration description in this thesis is "main.pgm", provided in APPENDIX F.

When configuration is completed a new file, containing a bootable version of the code

for the whole network, will have been created. The file have the same name as the

description source, but with a ".btl" extension. So, in this thesis it would be "main.btl".

A configuration description file with the ".dsc" extension is also created for debugger.

In order to take advantage of fast internal memory, it is possible for the main

harness on each processor to control allocation of workspaces using the PLACE

statement. Occam arrays may be stored in the occam scalar or vector workspaces using

this mechanism. The PLACE statements override the default action of the occam compiler

which itself is dependent upon a compiler switch.

4. Loading and Running

For the multi-transputer systems, the host file server is used to boot and load

a network of transputers. The configure adds bootstrap code to initialize each transputer

and route code to the appropriate processor. A communication protocol exists between the

root transputer and a target transputer network to direct the loading of code to the desired

50



place in each transputer. Provided the harness for each processor is structured in the same

way as the default harness, a program distributed over a network can be restarted.

The sequence of operation on transputer network is shown in Figure 12.

piTESTFAM Ibind
-AA ompile N-TS-E PRJ.

]PROJ1.ADA )[mi¢ bind

[ RO2"DA
com p ihe" -W PROJ2.O -

IPOID bind

PROJ3ADA F mpile  ind- PROJ3.O0 -

•Opl b in ddln
PROJ4.ADA =1 PRO,4 - " RO,4HI-.C8S]

- ROJ3H.CSS8

PROJ4 H2.OC ocmROJ4H2.TA " O OJHC

-RoJ3.M8s
oca PRO--H.C amcct-48 H. 8PRO3H.O RF-3H.ROJ3nf -iers

"ROJ2H.M8S MAIN.BTL D

PROJ2HOCC amil'nkAIN.DSC I
L-----. occam [--- ROJ2.r - ROJ1H.C8SS

rRKOJZ H2.OC-Cj--- RO J2H2.TAX "

-ROJIH.Mss

occam -IRO J 147"18 -iln

PRO J H2OCCI-'PROJ 1H2TA7 " "nk AINH .C 8S

tRO0H occa m ANIM 8:1MI

PR, OHOC am H.SI

ccmoc ROJ.nsl

Figure 12: Sequence of operations on a five transputer network
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C. TEST THE PERFORMANCE OF A 5 TRANSPUTER NETWORK

Before placing the Ada program that performs the task of each subsystem into each

transputer in the network, the test Ada program has been made to ensure that all the

performance in the network is correct. Each test Ada program should have the data

communication exactly the same as the requirement of each subsystem.

The main requirement of data communication is to send and receive the three

dimensional vector,(X,YZ), around the network. The specific type of data communication

is declared in the package COMMON in the file common.ada in APPENDIX G. The idea

of the test program is sending and receiving the three values of floating point number in

term of vector communication around the transputer network. Each transputer executes

the different Ada program. The test network will look like Figure 13.

TO TI T2

p krmdalrChanne AdaChan
----0• rj 2 -00 Poj 1 2 -03 Proj2 0

C to.filer
3 3 2Ah

I Proj4 3 Chan 2Prj3 0

0 1

T4 T3

Figure 13: Test network of transputers
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Each transputer performs different task in almost the same way. The main procedure

of each program performs the production its own outputs and in the same time performs

the communication in difference channel around the network. The communication links

used in the network have to be defined the name of channel.

1. Transputer T4

T4 is the IMS T800 transputer in the IMS B003 evaluation board. In this board

link3 of T4 is connected to link2 of T3. T 4 executes the proj4.ada which produces the

output vector in three dimensions and sending these values to T3 through the

communication link3.out using the channel named "Chan".

2. Transputer T3

T3 is the IMS T800 transputer in the IMS B003 evaluation board. In this board

link3 of T 3 is connected to link2 of T 2. T3 executes the proj3.ada which produces its own

outputs, receiving the output values of T4 from the communication link2.in using the

channel named "Chan". passing these values and sending its own outputs to T, through

the same communication link3.out using channel named "Achan".

3. Transputer T.

T, is the INIS T800 transputer in the IMS B003 evaluation board. In this board

link3 of T, is connected to link2 of T. T 2 executes the proj2.ada which produces its own

outputs. receiving the values from T3 via communication link2.in using the channel named

Achan", passing the outputs of T,, T 3 and sending its own outputs to T, through the same

communication link3.out using the channel named "AdaChan".
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4. Transputer T,

T1 is the IMS T800 transputer in the IMS B003 evaluation board. In this board

Iink3 of T1 is connected to link2 of T4. LinkO of T1 is connected to link2 of To in the

TMB08 TRAM motherboard. T, executes the proj 1.ada which produce its own outputs,

receiving the values from T 2 via communication link2.in using the channel named

"AdaChan", passing the outputs of T4, T3, T2 and sending its own outputs to To through

the samo communication linkO.out using the channel named "AdaChannel".

5. Transputer T.

To is the IMS T800 25 Mhz in the IMS B417 TRAM connected to PC using

the TMB08 motherboard. Liiik2 of T, is connected to linkO of T, in the B003 evaluation

board. T, executes the projO.ada which produces its own outputs after receiving the values

from T, via the communication linkO.in using channel named "AdaChannel". To performs

as the host transputer communicating with the PC using the channel "from.filer" and

"to.filer" to take care the print out of all the values passed from T4, T3, T2, T, and its own

outputs to the screen.

The Ada codes of projO, projl, proj2, proj3 and proj4 which run on T0, T1, T2, T3

and T, re pectively are provided in APPENDIX G. This appendix also provides the output

and package COMMON in file common.ada which is used to take care the specific type

of data communication. In this case, the communicated data is the three dimensional array

of floating point number-.

54



D. SMALL TACTICAL SYSTEM

By the test performance of 5 transputer network in section C, the Small Tactical

System can be developed. The idea of the Small Tactical System development is to place

each subsystem into each transputer in the network as shown in Figure 14.

TO TI T12

C Ie th Host Interception Sst Prediction

Hot Chan Target
Spare ' " Tracker

T4 T3

Figure 14: Modell-ing of Small Tactical System

Therefore, the performance of each transputer in the Small Tactical System network

will be as the following

To executes the Host program.

T, executes the Interception Subsystem program.

T2 executes the Prediction Subsystem program.

T3 executes the Target Tracker Subsystem Program.

T, executes the Hot Spare program.
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Since the Interception Subsystem and the Hot Spare have not been developed yet,

the Target Tracker Subsystem and Prediction Subsystem have been placed onto the

transputer T 3 and T2 respectively. The connection looks like Figure 15.

AdaChannel

TO T4 "tT1

PC .4 1 Host -oi Interception Prediction

to.filer

T3 [ T2 A d a C h a n

Hot Target
Spare Tracker

Figure 15: Connection Network

Due to changing the network, they might need to change a little bit in the programs

and reconnected soft wires by connect link 2 of the T800 25 Mhz in the TMB08 board

to link I of the second T800 20 Mhz in the B003 evaluafion board. When the new

connection has been made, the output of the check program looks like below

check 1.21
# Part rate Mb Bt [ LinkO Linkl Link2 Link3
0 T800d -25 0.18 0 HOST 1:1 2:1 ... ]
1 T2 -17 0.90 1[ ... 0:1 ... C004]
2 T800c -20 0.90 0[ ... 0:2 3:3 4:2 ]
3 T800c-20 0.90 3[ ... ... 5:3 2:2 ]
4 T800c-20 0.90 2[ ... ... 2:3 5:2 ]
5 T800c-20 0.89 3[ ... ... 4:3 3:21]
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The connection of this network is shown in Figure 16.

.- -.i .._..... DN
I Iso POWER

6
5T

41

2

1 III T

~~o -U 30

[ I6p L W

up

TMB 08 37 pins B003 Connector
D-Type Connector

Figure 16. External Links

Now it looks like three transputers network. Using two T800 20 Mhz on the B003

evaluation board and one T800 25 Mlhz TRAM to simulate the performance of Small

Tactic.,' System by placing the Ada program of Target Tracker Subsystem in APPENDIX

C onto transputer T2 and placed the Ada program of the Prediction Subsystem in

APPENDIX D onto transputer T1. The transputer To takes care of the communication with

host PC and prints out the output on the screen. The performance of each transputer in

this network is described below
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1. Transputer To

To is the IMS T800 25 Mhz in the IMS B417 TRAM connected to PC using

the TMB08 TRAM motherboard. Link2 of T. is connected to linkl of T, in the B003

evaluation board. To executes the projO.ada which receives the values from T , via

communication link2.in using the channel named "AdaChannel". T. performs as the host

transputer communicate with the PC using the channel "from.filer" and "to.filer" to take

care the print out of all the final result of the Small Tactical System.

2. Transputer T,

T, is the IMS T800 transputer in the IMS B003 evaluation board. Link1 of Ti

is connected to link2 of To in the TMB08 TRAM motherboard. T1 executes the pi .ada

which is the Prediction Subsystem, receiving the simulated tracked data from T 2 via

communication link2.in using the channel named "AdaChan", and making the calculation

using those values. It produces the coefficient values of Orthogonal Polynomial and sends

to T, through the communication linkl.out using the channel named "AdaChannel".

3. Transputer T2

T 2 is the IMS T800 transputer in the IMS B003 evaluation board. Link3 of T2

is connected to link2 of T. T2 executes the proj4.ada which is the Target Tracker

Subsystem. It produces the simulated tracked data vector in three dimensions, collects

seven values of data by keep update these data every second and sending these values to

T, through the communication link3.out using the channel named "AdaChan".

The code of three transputers network are provided in APPENDIX H.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. Ada on Transputers Network

a. Alsys-Ada Compiler

The Alsys-Ada Compiler includes a package named CHANNELS that

implements communication on transputer links. It defines relevant data types, and

procedures for channel I/O.

b. Occam Support

Ada code cannot be compiled to run on the transputer. Each Ada program

must be supported with a harness of Occam. Other Occam programs (supplied with the

Alsvs distribution) handle merging error output, providing entry points to the code,

defining the interface between the Ada procedures and the harnesses, and configuring the

procedures for the transputer topology. The Ada and Occam objects are ultimately linked

together into single module, regardless of the number of transputers. At run time, this

module is decomposed by the Occam Toolset isen'er and farmed out to the topology.

C. Issues

The limitations of running Ada programs on the transputer are hard to

determine owing to the thin documentation. Trial and error must be employed. It is not

vet clear what is the best method for passing data from Ada to Occam processes. Occam
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provides elegant mechanisms for transmitting complex data structures. Ada has no such

utility. Thus, the size of the Ada run-time code means that only one compiled Ada

program can be run on a transputer. There is no facility for compiling multiple Ada

objects with a single run-time system.

2. Formal Approach

This thesis is intended to provide the first stage or activity within the software

development with Ada program on transputer by using the Alsys-ada compiler. Each

subsystem runs the Ada program on each processor separately and at the same time each

transputer sends the data through the communication links around the network. However,

not all the goals could be refined as necessary. In the same way we do not expect the

goal hierarchy to be complete. Future refinement goals, addition of new subgoals or

reorganization of the hierarchy might be necessary as knowledge on details in gained in

future stage of development.

One big problem that was found on developing the Small Tactical System is

the Alsys-Ada Compilation System. In the complex Ada program, the data communication

among the transputers network is difficult, especially the Ada programs that have the

concurrency performance TASK by themselves. A lot of confusion in the protocols occurs

when the transputers communicate different types of data through communication links.

The goal hierarchy is not yet completely defined, but the modelling of Small

Tactical System shows that the commercial VLSI INMOS transputer can perform in the

same w,,y as the standard Navy's computer such as an AN/UYK-7 by running the

software written in the standard Department of Defence programming language, Ada.
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B. RECOMMENDATIONS

1. Future research

One of the requirement of the AEGIS combat system is that the system must

have Fault Tolerance in the system itself. Since this thesis is not dealing with this part

in depth, the software development which can detect all the faults diagnosed to one

transputer can be reloaded in healthy transputers in order to continue functioning.

a. Commercial VLSI Microprocessor

The newest version of transputer, the INMOS T9000, will be available

around Summer 1992. The T9000 is the implementation of a superscalar RISC

architecture. It integrates a 32 bit processor, a 64 bit floating point unit, 16K bytes Cache,

a communication processor and four links. The T9000 attains a peak performance of 200

MIPS. 25 MFLOPS and transmission rates of 800M Bits/sec at 50 Mhz. The T9000 is

software compatible with the first generation of transputers and also provides an improved

process and memory management. So, it is obvious that the T9000 has more features than

the T805 transputer and they are software compatible.

b. Real-Time Operating System

One of the drawbacks in using MS-DOS operating system for developing

the Small Tactical System is that it does not provide real-time mechanisms. To make the

step from the prototype to an oFerating system, it is necessary to select one of the

commercially available operating systems, which provide these mechanisms such as the

TRANS-RTXC.
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c. Classic-Ada

Classic-Ada is an extension to Ada that adds object-oriented features such

as class and inheritance. It supports standard Ada in its entirety. The Classic-Ada software

provides a toolset, most important of which is the Classic-Ada processor. The processor

converts programs written in the Classic-Ada language into standard Ada. The resulting

Ada programs can then be transferred to the PC and compiled using Alsys-Ada

compilation system for transputers.

d. Alan-Machine-Interface

The Man-Machine-Interface which is performed by the transputer T, in

the transputer network will be one of the most complex modules within the Small Tactical

System. Implementation of this interface using commercially available software tools

should be considered. In order to illustrate the simplest output and easy to operate system,

the application should contain software tools that include a text editor, menus, scroll bars,

icons and command buttons.

2. Small Tactical System Future Versions

In the Aegis combat system, there are many sources of sensors that can

provide the information of the target. The Tactical System also requires the information

from the Navigational system to calculate the accuracy value of interception time. Based

on the development of Ada version on transputer network implementation of Small

Tactical System, we can provide some considerations on possible future version which

can lead to development of the Navy's Aegis combat system update.
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a. Radar Interface

The network can get the positional information from the raw video

provided by radar system, format it and send it to the Target Tracker Subsystem. The

Target Tracker Subsystem will keep track that target.

b. Link 11 Interface

The network also can get the positional information from some other

source on communication system such as Link 11. There is a need of an interface that

digitizes this information into positional data and sends it to Target Tracker Subsystem.

c. Weapon System Interface

One of the most important features of a combat system is the interface

to a weapons system. The need for such an interface is certainly dependent on the type

of ship. The interfaces should provide the operator with the capability to employ the

weapon systems in their various operational modes.
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APPENDIX A

Ada code that provides the comparison between Trapezoid integration and

Simpson's integration. This program computes the aircraft location by using Trapezoidal

rule and Simpson's rule of integration. It compares the results with the observed long-

range radar. The aircraft assumed to fly back and forth between two points at altitude of

50(X) m. The output of this lead to choose the better method used to simulate tracked data

in the Target Tracker Subsystem.
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-- Description This program computes the aircraft location by using Trapezoidal rule
and Simpson's rule of integration. It compares the results with the
observed long-range radars and computes error values for each method.

...............................................................................................................

with TEXT_10, GENERICELEMENTARYFUNCTIONS;
use TEXT_10:

procedure PROJ is

package MATHFUNCT is new GENERICELEMENTARYFUNCTIONS(FLOAT);
use MATHFUNCT;

pazkage INTEGERINOUT is new INTEGERJO(INTEGER);
use INTEGERINOUT;
package FLOATINOUT is new FLOATIO(FLOAT);
use FLOATINOUT;

type COMPONENT is (X, Y, Z);
type VECTOR is array (COMPONENT) of FLOAT;
type VELVALUES is array (0 .. 4) of VECTOR;
DT : constant FLOAT := 0.250: -- delta time in seconds
XP_T: VECTOR; -- X prediction using Trapezoidal integration
XPS VECTOR; -- X prediction using Simpson's integration
XL VECTOR; -- X as observed from the long-range radar
T FLOAT:= 0.0: -- elapsed time
PI : constant FLOAT := 3.1415_9265_3589_7932_3846_2643
VEL VELVALUES; -- calculated velocities

procedure CALCULATE VEL(T: in FLOAT; VEL : out VELVALUES) is
-- This procedure CALCULATEs the VELocity vectors of the aircraft.

C I: constant FLOAT := 500.0 * PI / 6.0;
C2 constant FLOAT := PI / 60.0;
ANGLE: FLOAT;

begin
for I in VELVALUES'RANGE loop

ANGLE := C2 * (T + DT * FLOAT(I));
VEL(I) (X) := - Cl * SIN(ANGLE):
VEL(I) (Y) := Cl * COS(ANGLE):
VEL(I) (Z):= 0.0:

end loop,
end CALCULATEVEL:
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function TRAPEZOID(XPOS:in VECTOR;VEL:in VELVALUES) return VECTOR is
T: VECTOR;

begin
for I in COMPONENT loop

T(l) := 0.0;
for J in VELVALUES'range loop

T(I): T(I) + VEL(J) (1);
end loop;
T(I):=T(I)-(VEL(VELVALUES'FIRST)(I)+VEL(VELVALUES'LAST)()) I2.0;
T(I) :=XPOS(I) + DT *T()

end loop;
return T;

end TRAPEZOID;

function SLMPSON(XPOS:in VECTOR;VEL:in VELVALUES) return VECTOR is
T: VECTOR-,

begin
for I in COMPONENT loop
T(l):=(VEL( VEL VALUES 'FIRST)(I)+VEL(VEL_VALUES 'LAST)(I));.

for J in VELVALUES'FIRST+l..VELVALUES'LAST-l loop
if (J MIOD 2) = 1 then

T(I) T(I) + 4.0*VEL(J) (1);
else

T(l) :=T(I) +2.0*VEL(J) (1);
end if;,

end loop-
ITMl:) X POS (1) + DT * T(I) / 3. 0;

end loop;,
return T-,

end SIMPSON;

function LOCATION(T in FLOAT) return VECTOR is
CI: constant FLOAT 5000.0;
C2 :constant FLOAT :=P1I /60.0;.
77: VECTOR;,
ANGLE: FLOAT;

be an in
ANGLE: C2 T;
-FF(X) :Cl *COS(ANGLE).

T70") :=Cl *SINtANGLE);

TT(Z) :=4000.0.

return T-'.
end LOCATION,
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function DIST(VECI : in VECTOR; VEC_2 : in VECTOR) return FLOAT is
-- This function computes Euclidian DISTance between VEC_I and VEC_2

T : FLOAT:= 0.0;
begin

for I in VECTOR'RANGE loop
T :=T + (VEC_1(I) - VEC_2(I)) ** 2;

end loop;
return SQRT(T);

end DIST;

procedure PRINT(P : in VECTOR) is
-- This procedure PRINTs out values of one vector
begin

PUT(P(X), FORE => 5, AFT => 4, EXP => 0);
PUT(P(Y), FORE => 6, AFT => 4, EXP => 0);
PUT(P(Z), FORE => 5, AFT => 0, EXP => 0);

end PRINT;

procedure PUTHEADERS is
-- This procedure PUTs nice HEADERS before the data is printed out
begin

PUT("-
NEWLINE:
PUT(" T I"),
SETCOL(6):
PUT("I. Trapezoidal integration");
SETCOL(36):
PUT("errors I");
SET COL(46);
PUT(II. Simpson's integration"):
SETCOL(76):
PUT("errors"):
NEWLINE;
SETCOL(5):
PUT(" I ")-
SETCOL(12):
PUT('x y z I I"):
SETCOL(51):
PUT("x y z I"):
NEWLINE;
PUT(..)
NEWLINE:

end PUTHEADERS:
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begin -- main program

XPT(X) 5000.0;
XPT(Y) 0.0;
XPT(Z) 4000.0;
XPS(X) XPT(X);
XPS(Y) XPT(Y);
XPS(Z) XP-T(Z);
NEWLINE(2);
PUT_HEADERS;
for I in 1 .. 20 loop

for J in 1..30 loop
for K in 0..4 loop

CALCULATEVEL(T, VEL):
end loop;
T:= T + 1.0;
XP_T:= TRAPEZOID(XPT, VEL);
XPS := SIMPSON(XPS,VEL);

end loop;
-- print out results at 30 seconds regular intervals
XL:= LOCATION(T);
PUT(INTEGER(T), WIDTH => 3);
PUTC I
PRINT(XP_ );
PUTC" I ");
PUT(DIST(XPT, XL), FORE => 2, AFT => 4, EXP => 0),
PUT(" I ");
SETCOL(44);
PRINT(XP_S):
PUT(" I")-
PUT(DIST(XP_S, XL), FORE => 2, AFT => 4, EXP => 0):
NEWLINE:

end loop:
end PROJ:
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T I 1. Trapezoidal integration I errors 1 II. Simpson's integration I errors
I x y z x y z I

_ _ I

301 0.0713 4999.9282 4000.0 1 0.1013 I -0.0003 5000.0004 4000.0 10.0005
601-4999.8569 -0.0007 4000.0 0.1430 1-5000.0004 -0.0003 4000.0 i 0.0004
901 0.0722 -4999.9287 4000.0 1 0.1014 I 0.0005 -5000.0000 4000.0 10.0005

1201 4999.9990 0.0005 4000.0 0.0010 1 5000.0000 0.0010 4000.0 1 0.0001
1501 0.0697 4999.9272 4000.0 10.1019 I -0.0010 4999.9995 4000.0 10.0007
1801-4999.8564 -0.0023 4000.0 10.1435 1-5000.0000 -0.0016 4000.0 1 0.0015
2101 0.0740 -4999.9287 4000.0 1 0.1004 I 0.0013 -5000.0000 4000.0 1 0.0019
2401 4999.9995 0.0021 4000.0 1 0.0006 1 4999.9980 0.0013 4000.0 1 0.0020
2701 0.0684 4999.9277 4(X.() 10.0996 I -0.0033 4999.9990 4000.0 1 0.0033
3001-4999.8574 -0.0035 4000.0 10.1425 1-5000.0004 -0.0028 4000.0 10.0007
3301 0.0732 -4999.9287 4000.0 1 0.0975 I 0.0017 -4999.9995 4000.0 1 0.0048
3601 4999.9985 0.0018 4000.0 1 0.0022 I 4)99.9995 0.0024 4000.0 1 0.0022
3901 0.0672 4999.9272 4000.0 1 0.10141 -0.0038 4999.9995 4000.0 1 0.0006
420i-4999.8574 -0.0043 40(X).0 0.1425 1-5000.0000 -0.0039 4000.0 1 0.0026
4501 0.07- '! -4999.9291 4000.0 1 0.1023 I 0.0028 -5000.0009 4000.0 1 0.0026
4801 4999.9995 0.0026 4000.0 10.0009 14999.9995 0.0025 4000.0 1 0.0010
5101 0.0671 4999.9277 4000.0 1 0.1033 1 -0.(X)44 4999.9990 4000.0 1 0.0024
5401-4999.8569 -0.0043 4000.0 1 0.1431 1-5000.0009 -0.0037 4000.0 1 0.0035
5701 0.0756 -4999.9291 4000.0 1 0.101()1 0.0030 -4999.9990 4000.0 0.0010
6001 4999.9995 0.0041 4000.0 1 0.0026 1 4999.9985 0.0051 4000.0 10.0021
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APPENDIX B

Ada code for the Target Tracker Subsystem. The objective of this program is to

show the simulate data which is sent to the Prediction Subsystem. The actual required of

the Prediction subsystem is only the positions of the target in X,Y and Z direction but

output of this program also shows the velocities in three dimension. Assume that when

radar starts to track the target, it approaches at some acceleration until reaching its

maximum speed, and then it approaches with constant velocities. In this case assume the

taCet is a missile whose maximum speed is Mach 3. The initial position that is assumed

to be the maximum tracking range of the radar (assume to be 35 Km.). The tracked data

simulation is terminated when the target is too close that the track radar cannot longer

keep track it anymore.

The first three column of the output is the simulated tracked data that will send to

the Prediction Subsystem. Since the Prediction Subsystem needs at least seven positions

of the tracked data this code will be modified before put in the network of transputers.
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with TEXT 10, CALENDAR, GENERICELEMENTARYFUNCTIONS;
use TEXT_10, CALENDAR;

procedure PROJ is

package MATH FUNCT is new GENERICELEMENTARYFUNCTIONS (FLOAT);
use MATHFUNCT,

package FLOATINOUT is new FLOATIO(FLOAT);
use FLOATINOUT;

-- Type identifications
type COMPONENT is (X,YZ);
type VECTOR is array (COMPONENT) of FLOAT;
type VELOCITIES is array (0..4) of VECTOR;

DELTATIME : constant FLOAT := 0.25; -- delta time t = 1/4 seconds

NO TARGET: BOOLEAN := FALSE;
CURRENT : constant INTEGER := 4;
LINTSEC :INTEGER-
INTERVAL " DAYDURATION := 1.0;
DISPTIME • DAYDURATION := 0.0;
POSITION VECTOR := (27000.0,22000.0,5000.0);
INTVEL " VECTOR := (230.0,180.0,25.0);
VELOCITY VELOCITIES;

function "+"(LEFT, RIGHT : in VECTOR) return VECTOR is
.............................................................................

-- This function is written to handle VECTOR addition.
.............................................................................

TEMP: VECTOR:
begin

TENIP(X) := LEFT(X) + RIGHT(X):
TEMP(Y) := LEFT(Y) + RIGHT(Y):
TEMP(Z) := LEFT(Z) + RIGHT(Z);
return TEMP;

end "+";
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function "-"(LEFT, RIGHT : in VECTOR) return VECTOR is

-- This function is written to handle VECTOR subtraction.

TEMP• VECTOR;
begin

TEMP(X) := LEFT(X) - RIGHT(X);
TEMP(Y) := LEFT(Y) - RIGHT(Y);
TEMP(Z):= LEFT(Z) - RIGHT(Z);
return TEMP;

end "-",

function SIMPSON(XPOS:in VECTOR; VEL:in VELOCITIES) return VECTOR is
...........................................................................................................

-- This function performs numeric integration using Simpson's rule and return a
-- position vector giving a set of sample VELOCITIES.

..........................................................................................................

T: VECTOR;
I "COMPONENT;
J : INTEGER;

begin
for I in COMPONENT loop

T(I):= (VEL(VELOCITIES'FIRST) (I) + VEL(VELOCITIES'LAST) (I));
for I in VELOCITIES'FIRST+L.. VELOCITIES'LAST- 1 loop

if (J MOD 2) = I then
T(I) T(I) + 4.0*VEL(J) (I);

else
T(l) := T(I) + 2.0*VEL(J) (I):

end if:
end loop-
T(I) := DELTATIME * T() / 3.0:

end loop;
return T;

end SIMPSON:

package ATOD is
..........................................................................................

-- This package is used to maintain the velocity values for the previous
-- second at 1/4 second intervals (five "alues). It has one function
-- which returns an array of five vector. The task is written to handle
-- concurrent processing of ACCELEROMETER.
......................................................................................72..
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procedure INITIALIZEVELOCITY(FIRSTVEL : in VECTOR);
procedure GETVELOCITIES(NEWVEL: out VELOCITIES);
task ACCELEROMETER is

entry START;
end ACCELEROMETER;

end ATOD;

package body ATOD is
VEL : VELOCITIES := (others => (others => 0.0));

procedure INITIALIZEVELOCITY(FIRST_VEL: in VECTOR) is
I :INTEGER;

begin
for I in VELOCITIES'RANGE loop

VEL( := FIRSTVEL;
end loop.

end INITIALIZEVELOCITY;

procedure GETVELOCITIES(NEVVEL out VELOCITIES) is
begin

NEWVEL:= VEL;
end GETVELOCITIES;

task body ACCELEROMETER is
use CALENDAR;
INTERVAL constant DURATION 0.25;
DISPTIME DURATION := 0.0;
LINTSEC :INTEGER :=0;

beCin
accept START do
null,
end START;

LINTSEC:= INTEGER(SECONDS(CLOCK));
DISPTIME:= DURATION(LINT_SEC);
while DISPTIME < SECONDS(CLOCK) loop

DISPTIME := DISPTIME + INTERVAL;
end loop.
loop

delay DISPTIME - SECONDS(CLOCK);
for I in VELOCITIES'FIRST..VELOCITIES'LAST-1 loop

VEL(I) := VEL(I+1);
end loop;
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VEL( VELOCITIES 'LAST): = VEL(VELOCITIES 'LAST)+
(0.0 12,0.0098,0.00275);

exit when VEL(4)(X) > 700.0;
end loop;

end ACCELEROMETER;
end ATOD;

procedure PUTPOSITIONVELOCITY (XP: in VECTOR; VEL: in VECTOR) is
begin

SETCOL(2);
PUT(XP(X), FORE => 6, AFT => 4, EXP => 0);
PUT(" "*);
PUT(XP(Y), FORE => 6, AFT => 4, EXP => 0);
PUT(" ");

PUT(XP(Z), FORE => 6, AFT => 4, EXP => 0);
PUT(" *');

PUT(VEL(X), FORE => 6, AFT => 4, EXP => 0);
PUT(' ");
PUT(VEL(Y), FORE => 6, AFTr => 4, EXP => 0);
PUT( '"),

PUT(VEL(Z), FORE => 6, AFT => 4, EXP => 0);
NEWLINE;

end PUTPOSITIONVELOCITY;

begz~n -- main program

ATOD.INITIALIZEVELOCITY(INL-VEL);
LINTSEC := INTEGER (S ECONDS (CLOCK));
DISPTIME := DURATION (LINTS EC) + 0.8;
ATOD. ACCE LE ROM ETER. START;
while NOTARGET = FALSE loop

if POSITION X) > 0.0 then
delay (DISP_TIME - SECONDS(CLOCK) - 0.02):
ATOD.GETVELOCITIES (VELOCITY);
PUTPOS ITIONVELOCITY(POS ITION.VELOCITY (CURRENT));
POSITION := POSITION - SIMPSON(POSITION,VELOCITY);
DISPTIME := DISPTIME + INTERVAL;

else
NOTARGET := TRUE-.

end if.
end loop:,

end PROJ;
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Output of this program shows that the first 12 second the target approaches with

some acceleration and when reaching its maximum speed it approaches with constant

velocities. The first 3 columns are the positions and the last 3 column are the velocities.

27000.0000 22000.0000 5000.0000 230.0000 180.0000 25.0000
26770.0000 21820.0000 4975.0000 267.6113 210.7207 33.6252
26502.4121 21609.2988 4941.3803 315.5249 249.8562 44.6130
26186.9101 21359.4628 4896.7729 363.4386 288.9918 55.6009
25823.4960 21070.4902 4841.1777 411.3523 328.1274 66.5851
25412.1679 20742.3828 4774.5981 459.2659 367.2630 77.5577
24952.9257 20375.1386 4697.0458 507.1916 406.4084 88.5330
24445.7578 19968.7500 4608.5180 555.1789 445.5146 99.4974
23890.6035 19523.2558 4509.0258 603.2025 484.6404 110.4673
23287.4257 19038.6347 4398.5639 651.2020 523.7832 121.4316
22636.2480 18514.8710 4277.1376 699.2015 563.0112 132.3960
21937.0703 17951.8789 4144.7470 700.0071 563.6696 132.5800
21237.0878 17388.2285 4012.1726 700.0071 563.6696 132.5800
20537.1054 16824.5781 3879.5981 700.0071 563.6696 132.5800
19837.1230 16260.9277 3747.0236 700.0071 563.6696 132.5800
19137.1406 15697.2773 3614.4492 700.0071 563.6696 132.5800
18437.1582 15133.6269 3481.8747 700.0071 563.6696 132.5800
17737.1757 14569.9765 3349.3002 700.0071 563.6696 132.5800
17037.1933 14006.3261 3216.7258 700.0071 563.6696 132.5800
16337.2099 13442.6757 3084.1513 700.0071 563.6696 132.5800
15637.2265 12879.0253 2951.5769 700.0071 563.6696 132.5800
14937.2431 12315.3750 2819.0024 700.0071 563.6696 132.5800
14237.2597 11751.7246 2686.4279 700.0071 563.6696 132.5800
13537.2763 11188.0742 2553.8535 700.0071 563.6696 132.5800
12837.2929 10624.4238 2421.2790 700.0071 563.6696 132.5800
12137.3095 10060.7734 2288.7045 700.0071 563.6696 132.580()
11437.3261 9497.1230 2156.1301 7009071 563.6696 132.5800
10737.3427 8933.4726 2023.5555 709.0071 563.6696 132.580()
10()37.3593 8369.8222 1890.9809 700.0071 563.6696 132.58(X)

9337.3759 7806.1723 1758.4063 700.0071 563.6696 132.5800
8637.3925 7242.5224 1625.8317 700.0071 563.6696 132.5800
7937.4096 6678.8725 1493.2572 700.0071 563.6696 132.5800
7237.4267 6115.2226 1360.6826 700.0071 563.6696 132.5800
6537.4438 5551.5727 1228.1080 700.0071 563.6696 132.5800
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APPENDIX C

Since the Prediction Subsystem requires at least seven position values in each

dimension. The Ada code in this appendix is the modified code from APPENDIX B that

prepare the output ready to send to the Prediction Subsystem in term of array 3*7 of

floating point numbers. The output of this program is (Xo,Y 0,Z0),(X1,Y,,ZO) ... (X6,Y6,Z6).
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-- File: proj.ada

with TEXT_10, CALENDAR, GENERICELEMENTARYFUNCTIONS;
use TEXT_10, CALENDAR;

procedure PROJ is

package MATHFUNCT is new GENERICELEMENTARYFUNCTIONS(FLOAT);
use MATHFUNCT;

package FLOATINOUT is new FLOATIO(FLOAT);
use FLOATINOUT;

-- Type identifications
type COMPONENT is (XY,Z);
type VECTOR is array (COMPONENT) of FLOAT;
type VELOCITIES is array (0.4) of VECTOR;
type ARY_7 is array (..6 of VECTOR;

DELTATIME • constant FLOAT := 0.25; -- delta time t = 1/4 seconds
NOTARGET • BOOLEAN := FALSE;
CURRENT • constant INTEGER := 4;
LINTSEC : INTEGER;
INTERVAL • DAYDURATION := 1.0;
DISPTIME • DAYDURATION := 0.0;
POSITION • VECTOR := (27000.0.22000.0,5(00.0);
P.IN),PIP2,P3,P4,P5.P6 : VECTOR := (0.0.0.0,0.0);
INTVEL VECTOR := .30.0,180.0,25.0):
VELOCITY 'VELOCITIES:
B : ARY_7;

function ""i(LEFT, RIGHtT : in VECTOR) return VECTOR is

-- This function is %,ritten to handle VECTOR addition.

TEMP -VECTOR,
begzin

TE.MP(X: LEFT(Xt + RIGHTtXi;
TE\IPOY) := LEFT(Y) + RIGHT(Y):
TENIPZ) = LEFT(Z) + RIGYIT(Z):
return TEMP:

end "+"
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function "-"(LEFT, RIGHT: in VECTOR) return VECTOR is
.............................................................................

-- This function is written to handle VECTOR subtraction.
.............................................................................

TEMP : VECTOR;
begin

TEMP(X) := LEF(X) - RIGHT(X);
TEMP(Y) := LEFT(Y) - RIGHT(Y);
TEMP(Z) := LEFT(Z) - RIGHT(Z);
return TEMP;

end "- •

function SIMPSON(XPOS: in VECTOR; VEL: in VELOCITIES) return VECTOR is
...........................................................................................................

-- This function performs numeric integration using SIMPSONS rule and return a
-- position giving a set of sample VELOCITIES. and the DELTATIME between
-- those velocities.

...........................................................................................................

T : VECTOR:
I "COMPONENT:
J: INTEGER:

begin
for I in COMPONENT loop

T(I) := (VEL(VELOCITIES'FIRST) (1) + VEL(VELOCITIES'LAST) (I));
for J in VLLOCITIES'FIRST+I..VELOCITIES'LAST-1 loop

if (J MOD 2) = I then
T(I) := T(I) + 4.0*VEL(J) (I);

else
T(I) := T(I) + 2.0*VEL(J) (I),

end if,
end loop.
T(l) := DELTATIME * TnI) / 3.0;

end loop:
return T.

end SIMPSONI

package ATOD is

-- This package is used to maintain the velocity values for the previous second at 1/4
-- second intervals (five values). It has one function which returns an array of five
-- vector. The task is written to handle concurrent processing of ACCELEROMETER.
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procedure INITIALIZEVELOCITY(FIRSTVEL : in VECTOR);
procedure GETVELOCITIES(NEWVEL : out VELOCITIES);
task ACCELEROMETER is

entry START;
end ACCELEROMETER;

end ATOD;

package body ATOD is
VEL : VELOCITIES := (others => (others => 0.0));

procedure INITIALIZEVELOCITY(FIRSTVEL : in VECTOR) is
I :INTEGER;

begin
for I in VELOCITIES'RANGE loop

VEL(I):= FIRSTVEL;
end loop;

end INITIALIZEVELOCITY;

procedure GET_VELOCITIES(NEWVEL out VELOCITIES) is
be-in

NEWVEL:= VEL:
end GETVELOCITIES;

task body ACCELEROMETER is
use CALENDAR;
INTERVAL constant DURATION 0.25;
DISPTIME DURATION := 0.0;
LINTSEC :INTEGER :=0;

begin
accept START do
null;
end START:

LINTSEC := INTEGER(SECONDS(CLOCK));
DISPTIME := DURATION(LINT_SEC);
while DISPTIME < SECONDS(CLOCK) loop

DISPTIME - DISP_TIME + INTERVAL;
end loop:
loop

delay DISP_TIME - SECONDS(CLOCK):
for I in VELOCITIES'FIRST..VELOCITIES'LAST-1 loop

VEL(Il := VEL(I+I)
end loop.
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VEL( VELOCITIES 'LAST): VEL(VELOCITIES 'LAST) +
(0.0 12,0.0098,0.00275);

exit when VEL(4)(X) > 700.0;
end loop;

end ACCELEROMETER;

end ATOD;

begin -- main program

ATOD.INITIALIZEVELOCITY(INL-VEL);
LINTSEC: INTEGER(S ECONDS (CLOCK));
DISPTIME: DURATION (LINTSEC) + 0.8;
ATOD. ACCELEROM ETER. START;

delay (DISP_TIME - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITIES (VELOCITY);
P0(X): POSITION(X),
P0(Y): POSITION(Y),
P0(Z) :=POSITION(Z);
B(0) (X) PO(X);
B (0) (Y) P0(Y);
B (0) (Z) P0(Z);

POSITION: POSITION - SIMPSON(POSITIONVELOCITY);
DISPTIME: DISPTIME + INTERVAL:
delay (DISPTIME - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITIES(VELOCITY);
PI(X): POSITION(X);
P1I(Y) := POSITION(Y),
P1I(Z): POSITION(Z):,
B(l)(X) := P1(X);,
B (1) (Y) :=P1I(Y);
B(l)(Z): P1(Z);

POSITION: POSITION - SIMPSON(POSITION,VELOCITY);
DISPTIME: DISPTIME + INTERVAL;
delay (DISP_TIME - SECONDS(CLOCK) - 0.02);
ATOD.GET_-VELOCITIES (VELOCITY);
P2(X): POSITION(X);
P2(Y): POSITION(Y);
P2(Z) :=POSITION(Z),
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B(2)(X) P2(X);
B(2)(Y) P2(Y);
B(2)(Z) P2(Z);

POSITION: POSITION - SIMPSON(POSITION,VELOCITY);
DISPTIME: DISPTIME + INTERVAL;
delay (DISP_TIME - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITWES (VELOCITY);
P3(X): POSITION(X);
P3(Y): POSITION(Y);
P3(Z) :=POSITION(Z);
B(3)(X): P3(X);
B(3)(Y) := P3(Y);
B(3)(Z): P3(Z);

POSITION: POSITION - SIMPSON(POSITION,VELOCITY);
DISPTIME := DISPTIME + INTERVAL;
delay (DISPTIME - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITIES (VELOCITY)-,
P4(X) := POSITION(X):,
P4\(Y)= POSITION(Y).
P4(Z) :=POSITION(Z);.
B(4)(X): P4(X).
13(4)(Y)= P4(Y);
B(4)(Z): P4(Z);

POSITION :=POSITION - SIMPSON(POSITION,VELOCITY),
DISPTIE := DISPTIME + INTERVAL:
delav (DISPTIME - SECONDS(CLOCK) - 0.02);
ATOD.G ETVELOCITIES (VELOCITY).
P5iX): POSITION(X);
P5(Y): POSITION(Y);
P5(Z) := POSITION(Z);,
B (5) (X) : = P5 (X),
B(5)(Y): P5(Y)-.
B (5) (Z) :=P5 (Z) -

POSITION := POSITION - SIMPSON(POSITIONVELOCITY),
DISPTIME := DISPTlIE + INTERVAL;
delav (DISPTIMIE - SECONDS(CLOCK) - 0.02);
ATOD.GET_-VELOCITIES (VELOCITY);
P6(X) :=POSITION(X):,
P6(Y): POSITION(Y);.

81



P6(Z) :=POSITION(Z);
B(6)(X) := P6(X);
B(6)(Y): P6(Y);
B(6)(Z): P6(Z);

POSITION: POSITION - SIMPSON(POSITIONNVELOCITY);
DISPTIME := DISPTIME + INTERVAL;
while NOTARGET = FALSE loop

if POSITION(X) > 0.0 then
PUT (13(0)(X), FORE => 6, AFT => 4, EXP => 0);
PUT (B(l)(X), FORE => 6, AFT => 4, EXP => 0);
PUT (B(2)(X), FORE => 6, AFT => 4, EXP => 0);
PUT (B(3)(X), FORE => 6, AFT => 4, EXP => 0);
PUT (B(4)(X), FORE => 6, AFT => 4, EXP => 0);
PUT (B(5)(X), FORE => 6, AFT => 4, EXP -=> 0),
PUT (B(6)(X), FORE => 6, AFT => 4, EXP => 0);
NEWLINE;

PUT (13(0)(Y), FORE => 6, AFT => 4, EXP => 0);,
PUT (B3(l)(Y), FORE => 6, AFT => 4. EXP => 0);
PUT (B(2)(Y), FORE => 6, AFT'F 4, FXP => 0);
PUT (B3(3)(Y), FORE => 6, AFT =~4, EXP => 0);
PUT (B(4)(Y), FORE => 6, AFT =?4, EXP => 0);
PUT (B(5)(Y), FORE => 6, AFT =?4, EXP => 0);,
PUT (B(6)(Y), FORE => 6, AFT =~4, EXP => 0);
NEWLINE;

PUT (13(0)(Z), FORE => 6, AFT => 4, EXP => 0)-:
PUT (130)(Z), FORE => 6, AFT => 4, EXP => 0);
PUT (13(2)(Z), FORE => 6, AFT => 4, EXP => 0);,
PUT (B(3)(Z),, FORE => 6, AFT => 4, EXP => 0):,
PUT (13(4)(Z), FORE => 6, AFT => 4, EXP => 0):
PUT (13(5)(Z), FORE => 6, AFT => 4, EXP => 0),
PUT (13(6)(Z), FORE => 6, AFT => 4, EXP => 0):,
NEW LINE( 3):,

delay (DISP_TIMIE - SECONDS(CLOCK) - 0.02):,
ATOD.GETVELOCITIES (VELOCITY);
P(X): POSITION(X).
P(Y): POSITION(Y);
P(Z) := POSITION(Z);.
POSITION: POSITION - SIMPSON(POSITION ,VELOCITY)-.
DISPTIME := DISPTIPME + INTERVAL;
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P(): P1;
PI P2;
P2 :=P3;

P3 P4,
P4 P5-;
P5 P6;
P6 P

B(0)(X) P0(kX):
BMA)() :=P1(X);

B (2) (X) P2(X);
B (3) (X) P3(X);
B (4) (X) P4(X);
B (5) (X) P5 (X).
B (6) (X) : P6(X);

B(0)(Y) M:P0Y);
B(1)(Y) PY;
B (2) (Y ) := ( )-
B (3) (Y) P.3(Y):
B( M(Y) :=P40Y),

B (5f) P5 (Y);
B(6)(Y) M=P6Y);

B (0)J(Z) :=PO(Z):

B(l)(Z) :P1(Z);

B (2) (Z) :=P2(Z).

B(3)(Z) P3(Zg:
B (4) Z) P4(Z)-.
B(5(Z) :=P5(Z):,

el'se
NO TARGET =- TRUE

end if:,
end loop;

end PROJ:
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APPENDIX D

Ada code that provides the performance of Prediction SubSystem. It needs at least

seven values of position vector and computes the Orthogonal Polynomial coefficient.
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-File: projl.ada

with TEXT_10, COMMON, CHANNELS:
use TEXT_10, COMMON;

procedure PROJ I is

B :ARY_7;
RESULT: VEC-3;
TOTAL : VEC-3;

C : CHAN NELS.CHANNELREF := CHANNELS. INPARAMETERS (2);
D : CHANNELS.CHANNELREF := CHANNELS.OUTPARA METERS (2);

-The channel used for communication with the program producing the stream.
-Input channels 0 and I are reserved for use by the run-time system.

package FLOATINOUT is new FLOAT IO(FLOAT);
use FLOATINOUT;

-- type identification
type COMPONENT is (XO,X1,X2,X3,X4,X5,X6);
type VECTOR is array (COMPONENT) of FLOAT;
type POSITIONS is array (0..3) of FLOAT;
type VEC is array (0-.2) of FLOAT;

-- orthogonal constant
CONSTO: VECTOR :=(1.0,1.0.1.0,1.0,1.0,1.0,1.0);

CONSTI: VECTOR :~(1.0,0.666,0.333,0.0,-0.333,-0.666,-1.0);
CONST2 :VECTOR :=(1.0,0.0,-0.6,-0.8,-0.6,0.0,1.0);

CON 5T3 :VECTOR :=(1.0,-I .0,- 1.0,0).0,1.0,1.0,-I .0);
T :VECTOR := (0.0,0.0,0.0,0.0,0.0,0.0,0.0j;
P05 : POSITIONS := (0.0,0.0,0.0,0.0);
COEF : VEC:,

function VECTOR-SUM (X :VECTOR) return FLOAT is
SUM : FLOAT := 0.0-,

begin
for I in X'RANGE loop

SUM := SUMN + X(fl)
end loop;
return SUM:-

end VECTORSU\1M



function VECTORSUMSQUARE (X : VECTOR) return FLOAT is
SUM-SQUARE: FLOAT := 0.0;

begin
for I in X'RANGE loop

SUM-SQUARE := SUM-SQUARE + (X(I)**2');
end loop;
return SUM-SQUARE;

end VECTORSUM-SQUARE;

function ORTHOGONAL (POSIN : VECTOR) return POSITIONS is
TEMPO,TEMP1,TEMP2,TEMP3 : VECTOR;
P05_OUTO,POSOUTIPOSOUT2,POSOUT3 : FLOAT;
ORTHO : POSITIONS;

begin
for I in COMPONENT loop

TEMPO(I) := POSIN(J) * CONSTO(I)
TEMPI(l) := POSIN(I) * CONST1(I);
TEMP2(I) := POSIN(I) * CONST2(I):,
TEMP3(I) := POSLN(I) * CONST3(I);

end loop:,
POSOUTO := VECTOR-SUM(TEMPO)/VECTOR_SUMSQUARE(CONSTO);
POSOUTI : VECTOR-SUM(TEMP1)/VECTOR_-SUM-SQUARE(CONST1);
POSOUT2 :=VECTOR-SUM(TEMP2)/VECTOR_-SUM-SQUARE(CONST2);

POSOUT3 := VECTOR-SUM(TEMP3)/VECTOR_-SUM-SQUARE(CONST3);
ORTHO := (POSOUTO,POSOUT,POS-OUT2,POSOUT3);
return ORTHO;

end ORTHOGONAL;

function COEFFCAL (A : in POSITIONS) return VEC is
aO~al,a2 : FLOAT;
V :VEC;

bevin
aO := A(0)+A(I)+A(2)+A(3):,
al :=(-A( 1)*(0.3333))+(A(2)*( 1 .2))+(-A(3)*(0.6667)):,
a2 :=(A(2)*(0.2000))+(A(3)*(1 .500));
V :=(aO,a l,a2);
return V;

end COEFFCAL,
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begzin
loop

VECTOR-IOREAD (C, RESULT);
VECTORIO.WRITE (D, RESULT);
exit when RESULT(O) < 0.0;
ARRAYIO.READ (C, B);
T(XO) :=FLOAT(B(0)(0));
T(Xl): FLOAT(B(1)(0));
T(X2) FLOAT(B(2)(0));
T(X3) FLOAT(B(3)(0));
T(X4) FLOAT(B(4)(0));
T(X5) FLOAT(B(5)(0));
T(X6) FLOAT(B(6)(0));
POS :=ORTHOGONAL(T);
COEF: COEFF-CAL(POS),
TOTAL(0) FLO_6(COEF(O))
TOTAL(l) FLO_6(COEF(1));
TOTAL(2) FLO_6(COEF(2))-.
VECTORIO.WRITE (D, TOTAL);

end loop;

TOTAL(O): -1.0:,
VECTORJO.WRITE (D, (TOTAL(O), 0.0, 0.0, 0.0));

end PROJ I;
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APPENDIX E

For a single transputer system, there are eight files that are needed to support the

operation. Assume all Ada code that will be run on single transputer has the main

procedure named PROJ in the file PROJ.ADA.

This appendix provides all code that is necessary to run our Ada program on single

transputer, which is the following:

- makefile

- family.inv

- proj.inv

- main.occ

- merger.occ

- projh.occ

- projh2.occ

- main.lnk
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# File :makefile

# 'make help" to print option list
# Complete dc lopment cycle:
# make family -- makes Ada family and library directories
# make -- compiles, links, configures source
# make run -- run bootable code

MODE =s

PROC =8

OPTS =/$(MODE) /t$(PROC)

# make the executable code
main.b$(PROC)$(MODE): main.c$(PROC)$(MODE)

iboot main. c$ (PROC)$ (M ODE)
C& f:\util\bell

main .c$(PROC)$(MODE): proj .o merger. t$(PROC)$(MODE) projh. t$(PROC)$ (MODE)
main. tS(PROC)$(MODE)

ilink /f main.lnk

proj.o: proj.ada
ada invoke proj.inv,yes

rnerger.t$(PROC)$(MODE): merger.occ
occam $(OPTS) merger.occ

pro jh.tS(PROC)$(MODE): projh2.tax projh.occ
occam $(OPTS) projh.occ

projh2.tax: projh2.occ
occam /ta /x projh2..occ

main.t$(PROCAN(ODE): main.occ
occam $(OPTS) main.occ

# misc.

help: _

Ca echo Make arguments:
C@ echo make - make from top level down
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@ echo make -n [opt] - display but don't execute commands
@ echo make proj.o - make Ada object
@ echo make help - display this list
@ echo make clean - delete all files except source
@ echo make run - run bootable program
@ echo make check - check transputer topology
@ echo make family - make Ada family and library directories

clean:
del *.?8?
del *.tax
del *.o
del proj-libadalib.*
rd projlib
del proj-fam\adafam.*
rd proj-fain

run:
iserver /sb main.b8s

check:
check /r

family:
ada invoke family.inv,yes

-- File: family.inv

fainily.new projfam.overwrite=ves
lib(family=proj-,am).new projjlib,overwrite=yes

-- File: proj.inv

compile source=proj. ada,library=proj li b
default.bind library=proj-lib,level=bind,waming=no
bind proj,object="proj.o",entry-point="proj.progran"

#File : main.occ

#OPTION "AGNVW"
#INCLUDE "hostio.inc"
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PROC MAIN.ENTRY (CHAN OF SP FromFiler, ToFiler, []INT FreeMemory,
StackMemory)

#USE "hostio.lib"

#USE "rnerger.t8s"

#USE "projh.t8s"

[I ]CHAN OF ANY Debug:
[2ICHAN OF SP FromAda, ToAda:
CH-AN OF BOOL StopDebug, StopMultiplexor:
WHILE TRUE

SEQ

PAR

-- A multiplexor to combine the debug and normal output.
so.muhtiplexor (FromFiler, ToFiler, FromAda, ToAda, StopMultiplexor)

-- A debug channel merger.
debugmerger (ToAda[Oj, FromAda[O], Debug, StopDebug)

-- A process to invoke the Ada programs.
SEQ

PAR
[500001 INT ws:
proj.harness (FromAda[ 11, ToAda[ 1], Debug[O], ws)
StopDebug ! FALSE
StopMultiplexor ! FALSE

so.exit (FromFiler, ToFiler, sps.success)
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# File: merger.occ

#OPTION "AGNVW"
#INCLUDE "hostio.inc"

PROC debug.merger (CHAN OF SP FromFiler, ToFiler,
[]CHAN OF ANY Debug,
CHAN OF BOOL Stop)

#USE "hostio.lib"

-- A debugy channel merger and blocker.

VAL max.debug IS 20:
VAL number.of.debug IS SIZE Debug:

INT line.index:
[2561BYTE line.buffer:
BYTE value, r:
BOOL running, reset, s:
[max.debug]BOOL mask:
VAL BYTE line.feed IS 10 (BYTE):
SEQ

SEQ i = 0 FOR number.of.debug
mask[ij := TRUE

running := TRUE
reset := FALSE
line.index := 0
WHILE running

PRI ALT
ALT I = 0 FOR number.of.debug

mask[iI & Debuglil ? value
SEQ

IF
value = line.feed

SEQ
-- Send the complete line.
so.puts (FromFiler. ToFiler, spid.stdout,

[line.buffer FROM 0 FOR line.indexl, r)
line.index := 0
mask [i1 := FALSE
reset := TRUE
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TRUE
SEQ

-- Add character to line.
line. buffer[ Iine. index] := value
line.index :=line.index + I

reset & SKIP
SEQ

reset :=FALSE
SEQ i = 0 FOR number.of.debug

mask[ij : TRUE
Stop ? s

running :=FALSE

-File: main.lnk
-Purpose: File list for ilink

mnain. t8s
rnertger. t8 s
host io.l1i b
occarn8s.lib
( projh.t8s proj.o adar-ts8.lib hostio.lib occarn8s.lib)

# File: projh2'.occ

#tOPTION "ALV'

PROC projiprogram ([lINT wsl, in, out, ws2)
1000 11NT d:

SEQ
SKIP

93



# File: projh.occ

#OPTION "AGNVW"
#INCLUDE "hostio.inc"

PROC proj.harness (CHAN OF SP FromAda, ToAda,
CHAN OF ANY Debug,
[JINT FreeMemory)

#IMPORT "projh2.tax"

[I ]INT dummy.ws:
ws IS FreeMemory:
[2MINT in.program, out.prograrn:
SEQ

-- Set up vector of pointers to channels.
in.program[Ol := MOSTNEG INT -- not used
LOAD. INPUT. CHANNEL (in.program[ 1], ToAda)
LOAD.OUTPUT.CHANNEL (out. program [0], Debug)
LOAD. OUTPUT.CHANNEL (out. programl1], FromAda)

-Invoke the Ada program.
-Assumes the entry point name has been changed to "proj.prograni".

proj .program (ws, in.program, out.program, dummy.ws)
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APPENDIX F

In multiple transputer systems, there is a need for the Occam Harness to support the

Ada program. Each Ada program run on individual transputer needs its own mini-harness.

This appendix provides all support code for the network of five transputers. For general

purpose of this support code, assume that the Ada program run on transputer T0 has the

main procedure named PROJO and is in the file PRPJO.ADA, the Ada program runs on

transputer T , has the main procedure named PROJ1 and is in the file PROJ1.ADA, and

so on. All the support code is the following:

- makefile

- family.inv

- proj?.inv 5 files

- mainh.occ

- merger.occ

- projh.occ 5 files

- proj?h2.occ 5 files

- main.pgm
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# File: makefile

# "make help" to print option list

# Complete development cycle:
# make family -- makes Ada family and library directories
# make -- compiles, links, configures source
# make run -- run bootable code

MODE =s

PROC 8
OPTS =/$(MODE) /tS(PROC)

# make the executable code
niain. btl: mainh.c$(PROC)$(MODE) proj Ilh.c$ (PROC)$(MODE)
proj2h.cS(PROC)S(MODE) proj3h.cS(PROC)$(MODE) proj4h.cS(PROC)$(MODE)
main .pgm

Ca echo EXPECT I WARNING... PRAY FOR !!!.. SUCCESSFUL
iconf /s main.pgm
C@ f:\i-til\bell

mainh.c$(PROC)$(MODE): projO.o proj~h.t$(PROC)$(MODE)
merger.tS(PROC)$(MODE) rnai nh. t$(PROC)$ (MODE)

ilink m ain h. t$(PROC)$(MODE) projO.o proj~h.t$(PROC)S(MODE)
mer ger. t$(PROC) $(MODE) adarts8.lib hostio.lib occam8s.lib

projO.o: common .ada projO. ada
ada invoke pr0jO.inV,yLS

projOh .tS (PROC) ( MODE): projOh2.tax projOh .occ
occam $(OPTS) proj~h.occ

projOh2.tax: projOh2.occ
occam Ita /x proj~h2.occ

merger.t$(PROC)$ (MODE): mer-er.occ
occam $(OPTS) merger.occ

main h. t$(PROC)S(MODE): mainh.occ
occam $(OPTS) mainh.occ:
prjIh.c$ PROC)$(MODE): pro 1l.o proj I h.t$(PROC)S(MODE)

ilink projlIh.t$(PROC)S(MODE) proj 1.0 adarts8.lib hostio.lib occam8s.Iib
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proj 1.o: comrnon.ada proj I ada
ada invoke projl.inv,ves

projl1h.t$(PROC)S(MODE): projlIh2.tax projlIh.occ
occarn $(OPTS) projlh.occ

proj I h2.tax: proj I h2.occ
occam /ta /x projlh2.occ

proj2h.cS(PROC)$(MODE): proj2.o proj2h.t$(PROC)$(MODE)
ilink proj2h.t$(PROC)$(MODE) proj2.o adarts8.lib hostio.lib occam8s.lib

proj2.o: comrnon.ada proj2.ada
ada invoke proj2.inv,yes

proj2h.t$(PROC)$(MODE): proj2h2.tax proj2h.occ
occam $(OPTS) proj2h.occ

proj2h2.tax: proj2h2.occ
occam /ta /x proj2h2.occ

proj3h.cS(PROC)$(NIODE): proj3.o proj3h.t$(PROC)$(NIODE)
ilink proj3h.t$(PROC)$(MODE) pro ,j3.o adarts8.lib hostioli1b occarn8s.]ib

proj3.o: comrnon.ada proj3.ada
ada invoke proj3.inv,yes

proj3h.t$(PROC)$(\IODE): proj3h2.tax proj3h.occ
occam $(OPTS) proj3h.occ

proj3h2.tax: proj3hi2.occ
occam /ta /x proj3h2.occ

proj4h .c$( PROC$( MODE): proj4.o proj4h .t$(PROC)$(MODE)
ilink proj4h.t$(PROC)$(NMODE) proJ4.o adarts8.lib hostio.lib occarns.lib

proj4.o: common.ada proj4.ada
ada invoke proj4.inv,yes

proj4h.t$(PROC)$(MODE): proj4h2.tax proj4h.occ
occarn $(OPTS) pro14hocc

pro 4h2tax: proj4h2.occ
occam /ta /x proj4h2.occ

# mlisc.

run: iserver /sb n-ainbtl

famnily: ada invoke famnily.inv~yes
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-File: projO.inv

default.compile library=testjlib
compile common.ada
compile projO.ada
default.bind library=test-lib level=bind,waming=no
bind projO,object='projO.o,entrypoint=projO.prograrn"

-File: projl.inv

defaultecompile library=test-lib
compile commonada
compile proj I ada
default.bind library=te-st-lib level=bind,waming~no
bind proj I object="proj I.o',enrrv-point="projl1.program"

-File: proj2.inv

default.cornpile librarv=test-lib
compile cornmon.ada
compile proj2.ada
default.bind Iibrary~test lib level=bind. waming~no
bind proj2,object="proj2.o",entry-point=proj2.program

-File: proj3.inv

default.compile library=test-lib
compile common.ada
compile proj3.ada
default.bind 1library=test-1libj evel =bind, warni ngzno
bind proj3,object='proj3.o",entry-point='proj3.progranm'

-- File: proj4 .inv

default.compile librarv=test-lib
compile commonada
compile proj4.ada
default.bind library~test-lib~levelkbind,warning~no
bind proj4,object=" proj4. o',e ntry-po n t=" proj4. program"
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-File: farnilv.inv

family.new testjfam,overwvrite=ves

libk fami lvyte st_farn). new testlib,over-write=yes

-File: mainh.occ

#OPTION "AGNVW"
#INCLUDE "hostio.inc"

PROC main.harness (CHAN OF SP From-Filer, ToFiler,
CHAN OF INT AdaChannel,
JINT Free Memory)

#USE 'hostio.lib"

#USE "projOh.t8s"
#USE 'mergert8s"

I]CHAN OF ANY Debug:
121CHAN OF SP FromAda, ToAda:
CHAN OF BOOL StopDebug, StopMultiplexor:
SEQ

PAR

-- A multiplexor to combine the debug and normal output.
so.multiplexor (FromiFiler, ToFiler, FromAda, ToAda, StopM ultiplexor)

-- A debug channel merger.
debug.merger (ToAda[01, FromAda[01, Debug. StopDebug,)

-- A process to invoke the sieve program.
ws IS FreeMemor,':
SEQ

projO.harness (FromAda[ 1 1, ToAda[ 11, Debug[O], AdaChannel, ws)
StopDebug ! FALSE
StopMultiplexor ! FALSE

soexit (FromFiler, ToFiler, sps.success)
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-- File: merger.occ

#OPTION "AGNVW'
#INCLUDE 'hostio.inc'

PROC debug.merger (CHAN OF SP FromFiler, ToFiler,
[]CHAN OF ANY Debug,
CHAN OF BOOL Stop)

#USE "hostio.lib"

-- A debug channel merger and blocker.

VAL max.debug IS 20:
VAL number.of.debug IS SIZE Debug:

INT line.index:
L256IBYTE line.buffer:
BYTE value, r:
BOOL running. reset, s:
jmax.debugIBOOL mask:
VAL BYTE lineA'eed IS 10 (BYiTE):
SEQ

SEQ i = 0 FOR numnber.of.debug
maskliJ := TRUE

running := TRUE
reset := FALSE
lineindex := 0
WH-ILE running

PRI ALT
ALT i = 0 FOR number.of.debug

maskij & Debug[i] ? value
SEQ

IF
value =line.feed

SEQ
-- Send the complete line.
so.puts (FromFiler, ToFiler, spid.stdout,

[linebuffer FROM 0 FOR line.indexJ, r)
line~index := 0
mask [il := FALSE
reset := TRUE
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TRUE
SEQ

-- Add character to line.
line. buffer[ line.index] :=value
line.index :=line.index + 1

reset & SKIP
SEQ

reset :=FALSE
SEQ i = 0 FOR number.of.debug

rnask[ij := TRUE
Stop ? s

running := FALSE
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-- File: proj0h.occ

#OPTION "AGNVW"
#INCLUDE "hostio.inc"

PROC projO.harness (CHAN OF SP FromAda, ToAda,
CHAN OF ANY Debug,
CHAN OF INT AdaChannel,
H]INT FreeMemory)

#IMPORT "projfh2tax'

[I INT dummy.ws:
wsl IS FreeMemory:
131INT in.program:
12 lINT out.program:
SEQ

-- Set up vector of pointers to channels.
in.program[0i := MOSTNEG INT -- not used

LOAD. INPUT.CHANNEL (in.program[ I], ToAda)
LOAD.JINPUT.CHAN NEL (in.program[2], AdaChannel)
LOAD. OUTPUT.CHAN NEL (out. program [0], Debug)
LOAD. OUTPUT.CHAN NEL (out.program[ 1], FromAda)

-Invoke the Ada program.
-Assumes the entry point name has been changed to 'projOprogram'.

projOprogram (wsl, in.program, out.program, dummy.ws)

-File: proj0h2.occ

#OPTION "AEV"
PROC proiO Aprogram (HINT wsl, in, out, ws2-)

[I owI INT d:
SEQ

SKIP
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-- File: projlh.occ

#OPTION "AGNVW"
#INCLUDE "hostio.ic"

PROC projl.harness (CHAN OF INT AdaChanrnel,
CHAN OF INT AdaChan,
I lINT FreeMemory)

#IMPORT "projl1tax'

[I INT dummv.ws:
wsl IS FreeMemory:
ws2 IS FreeMemory:
13]INT in.program:
[3IINT out.program:

SEQ
-- Set up vector of pointers to channels.
inprogram[Ol := MOSTNEG INT -- not used

LOAD. INPUT.CHANNEL (in.program[2], AdaChan)
LOAD.OUTPUT.CHANNEL (out.program[21, AdaChannel)

-Invoke the Ada program.
-Assumes the entry point name has been changed to "proj1. prog(ram".

proj I.program (wAs 1, inprogram, out.program, ws2)

-File: projlh2.occ

#OPT ION "AEV'
PROC projlI.program (I INT wsl1, in, out, ws2)

[IOGOIINT d:
SEQ

SKIP
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-- File: proj2h.occ

#OPTION 'AGNVW'
#INCLUDE "hostio.inc'

PROC proj2.harness (CHAN OF TNT AdaChan,
CHAN OF TNT Achan,
[]INT FreeMemory)

#IMPORT 'proj2h2.tax"

[I INT dummy.ws:
wsl IS FreeMemorv:
ws2 IS FreeMemory:
[3]INT in.program:
[3]INT out.program:

SEQ
-- Set up vector of pointers to channels.
in.prograrn[OI := MOSTNEG TNT -- not used

LOAD. INPUT.CHANNEL (in.program[ 2], Achan)
LOAD.OUTPUT.CHANNEL (out.progam[21, AdaChan)

-Invoke the Ada program.
-Assumes the entry point name has been changed to "proj2.program".

proj2.program (wsl, inprogram, out.program, ws2)

-File: proj2h2.occ

#OPTION "AEV'
PROC proj2.program (QlINT wsl, in, out, ws2)

[IOQOJINT d:
SEQ

SKIP
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-- File: proj3h.occ

#OPTION "AGNVWA'
#INCLUDE "hostio.inc"

PROC proj3.harness (CHAN OF INT Achan,
CHAN OF INT Chan,
HITNT FreeMemory)

#IMPORT -1proj3h2.tax"

[I ]INT duImmy.WS:
wsl IS Free~temory:
ws2 IS FreeMemory:
[3]INT inprogram:
[3IINT out.program:

SEQ
-- Set up vector of pointers to channels.
inprogramO] := MOSTNEG INT -- not used

LOAD. INPUT.CHANNEL (in.program[21, Chan)
LOAD.OUTPUT.CHANNEL (out. program[ 21, Achan)

-Invoke the Ada program.
-Assumes the entry point name has been changed to 'proj3.program'.

proj'3.program (ws 1, in.programn, out.program, Nks2)

-File: proj3h2.occ

#OPTION "AEV'
PROC proj3.program (HITNT %wsl, in, out, ws2)

I lOOOJINT d:
SEQ

SKIP
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-- File: proj4h.occ

#OPTION "AGNVW"
#INCLUDE "hostio.inc"

PROC proj4.harness (CHAN OF TNT Chan,
[JINT FreeMemor)

#IMPORT "proj4h2.tax"

[ IIINT dummy.ws:
wsl IS FreeMemory:
[21INT in.program:
[31INT out.program:
SEQ

-- Set up vector of pointers to channels.
inprogram[Ol : MOSTNEG TNT -- not used
in.program[ 1I I= MOSTNEG TNT -- standard i/o not used
out.program[0I : MOSTNEG INT -- standard i/o not used
out.program[ 1 I :=MOSTNEG TNT -- standard i/o not used

LOAD.OUTPUT.CHANNEL (out.progam[21, Chan)
-Invoke the Ada program.
-Assumes the entry point name has been changed to "proj3.program'.

proj4.program (wsl, in.program, out.program, dummy.%ks)

-File: proj4h~occ

#OPTION "AEV"
PROC proj4.program ([lINT wsl, in, out, ws2)

[ 10001 INT d:
SEQ

SKIP
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# File: rnain.pgm

#INCLUDE "hostio.inc'
#INCLUDE 'linkaddr.inc"

#USE "mainh.c8s'
#USE 'projlh.c8s"
#USE "proj2h.c8s'
#USE "proj3h.c8s'
#USE "proj4h.c8s"

CHAN OF TNT AdaChannel:
CHAN OF TNT AdlaChan:
CHAN OF TNT Achan:
CHAN OF INT Chan:
CHAN OF SP FromFiler, ToFiler:

PLACED PAR

PROCESSOR 0 T8
PLACE FromFiler AT link0.in:
PLACE ToFiler AT link0.out:
PLACE AdaChannel AT link2.in1:

[100000] TNT wsl1:

main.harness (From-Filer, ToFiler, AdlaChannel. wsl)

PROCESSOR I T8

PLACE AdaChannel AT linkO.out:
PLACE AdaChan AT link2".in:

[1000001ITNT ws2:

projlI.harness (AdlaChannel. AdaChan, ws2)

PROCESSOR 2 T8

PLACE AdaChan AT link3.out:
PLACE Achan AT link2.in1:

IOO(XX)L TNT ws3:
proj2.harness (AdaChan, Achan, ",s3)
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PROCESSOR 3 T8

PLACE Achan AT link3.out:

PLACE Chan AT link2.in:

1 1000001 INT wks4:
proj3.harness (Achan, Chan, ws4)

PROCESSOR 4 T8

PLACE Chan AT link3.out:

1000001 INT ws5:

pro2 -!.harnevs (Chan. Aws5)
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APPENDIX G

This appendix provides the Ada code for a five transpute~s network. Each file is the

Ada program that runs on transputer T., T 2, T 3, T4, and T5 individually. In this

appendix also provides the package COMMON in file COMMON.ADA which is the

declaration of common data types used for channel communication.
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-- File: common.ada

with CHANNELS;

package COMMON is

-- Declarations of common data types, especially those used for channel
-- communication.

type FLO_6 is digits 6
range -(2.0 - 2.0**(-23))*2.0**127 .. (2.0 - 2.0**(-23))*'2.0**127;

type VECTOR is array (0..2) of FLO_6;

-- Instantiations of the generic channel i/o package.

package VECTOR_1O is new CHANNELS.CHANNEL_10 (VECTOR);

end COMMON;
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-- File: proj0.ada

with TEXT_10, COMMON, CHANNELS;
use COMMON;

procedure PROJO is

package FLO_10 is new TEXTIO.FLOATIO(FLO_6);
use FLOO:

RESULT: VECTOR;
RES : VECTOR;
TOTAL : VECTOR;
TOL : VECTOR:
SUM : VECTOR;

D : CHANNELS.CHANNELREF := CHANNELS.INPARAMETERS (2);
-- The channel used for communication with the program producing the stream.
-- Input channels 0 and 1 are reserved for use by the run-time system.

begin

for J in 1..5 loop
SUM := (500.00,500.00.500.00);
TEXTIO.PUT ("DATA FROM TRANSPUTER # 0"):
FLU_IO.PUT (SUM(()), FORE => 4, AFT => 2, EXP => 0);
FLOIO.PUT (SUM(1), FORE => 4, AFT => 2, EXP => 0):
FLO_1O.PUT (SUM(2), FORE => 4, AFT => 2, EXP => 0);
TEXT_IO.NEW_LINE:

end loop;

loop
VECTORIO.READ (D, TOTAL);
exit when TOTAL(0)) < 0.0:
TEXT_IO.PUT (DATA FROM TRANSPUTER # 0 .0
FLO_IO.PUT (TOTAL(0), FORE => 4, AFT => 2, EXP =>0)
FLOlO.PUT (TOTAL(l), FORE => 4, AFT => 2, EXP =>0).
FLOIO.PUT (TOTAL(2), FORE => 4, AFT => 2, EXP =>0);
TEXTIO.NEW LINE:

end loop:
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loop
VECTORIO.READ (D, TOL);
exit when TOL(0) < 0.0;
TEXTIO.PUT ("DATA FROM TRANSPUTER #2")
FLOIO.PUT (TOL(0), FORE => 4, AFT => 2, EXP =>0);
FLOIO.PUT (TOL(1), FORE => 4, AFT => 2, EXP =>O);
FLOIO.PUT (TOL(2), FORE => 4, AFT => 2, EXP =>0);
TEXTIO.NEW_LINE;

end loop;

loop
VECTORIO.READ (D, RES);
exit when RES(0) < 0.0;
TEXTIO.PUT ("DATA FROM TRANSPUTER # 3")
FLOIO.PUT (RES(0), FORE => 4, AFT => 2, EXP => 0);
FLO_1O.PUT (RES(1), FORE => 4, AFT => 2, EXP => 0);
FLOIO.PUT (RES(2), FORE => 4, AFT => 2, EXP => 0);
TEXTIO.NEW_LINE;

end loop;

loop
VECTORIO.READ (D, RESULT);
exit when RESULT(0) < 0.0;
TEXT-JO.PUT ("DATA FROM TRANSPUTER # 4")
FLOIO.PUT (RESULT(0), FORE => 4, AFT => 2, EXP => 0);
PLOIO.PUT (RESULT(l), FORE => 4, AFT => 2, EXP => 0);
FLOIO.PUT (RESULT(2), FORE => 4, AFT => 2, EXP => 0);
TEXTIO.NEW_LINE;

end loop.

end PROJO;
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-- File: projl.ada

with TEXT_10, COMMON, CHANNELS;
use COMMON;

procedure PROJI is

RESULT: VECTOR;
RES :VECTOR;
TOTAL : VECTOR;
TOL : VECTOR;

C : CHANNELS.CHANNELREF := CHANNELS.INPARAMETERS (2);
D: CHANNELS.CHANNELREF := CHANNELS.OUTPARAMETERS (2);
-- The channel used for communication with the program producing the stream.

begin
for J in ..5 loop

TOTAL := (400.00,400.00,400.00);
VECTORIO.WRITE (D, TOTAL);

end loop;
TOTAL(0) := -1.00;
VECTOR_IO.WRITE (D, (TOTAL(O),0.00,0.00));

loop
VECTORIO.READ (C, TOL);
VECTOR_IO.WRITE (D, TOL);
exit when TOL(0) < 0.0;

end loop;

loop
VECTOR_IO.READ (C, RES):
VEC-TORIO.WRITE (D, RES);
exit when RES(0) < 0.0;

end loop;

loop
VECTORJO.READ (C, RESULT):
VECTO1RIO.WRITE (D, RESULT);
exit when RESULT(0) < 0.0;

end loop;
end PROJ I:
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-- File: proj2.ada

with TEXT_10;
with COMMON;
with CHANNELS;

procedure PROJ2 is

use COMMON;

RESULT: VECTOR;
RES : VECTOR;
TOL: VECTOR;

B : CHANNELS.CHANNELREF := CHANNELS.INPARAMETERS (2);
C: CHANNELS.CHANNELREF := CHANNELS.OUT_PARAMETERS (2);
-- The channel for communication with the other Ada program.
-- Output channels 0 and 1 are reserved for use by the run-time system.

begin

for I in I .. 5 loop
TOL := (300.00,300.00,300.00);
VECTORIO.WRITE (C, TOL);

end loop;

TOL(0) := -1.00;
VECTORIO.WRITE (C, (TOL(0),0.0,0.0));

loop
VECTORIO.READ (B, RESULT);
VECTOR_IO.WRITE (C, RESULT);
exit when RESULT(0) < 0.0;

end loop;

loop
VECTOR_IO.READ (B, RES);
VECTORIO.WRITE (C, RES);
exit when RES(0) < 0.0:

end loop;

end PROJ2;
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-- File: proj3.ada

with TEXT_10;
with COMMON;
with CHANNELS;

procedure PROJ3 is

use COMMON;

RESULT: VECTOR;
RES : VECTOR;

A: CHANNELS.CHANNELREF := CHANNELS.INPARAMETERS (2);
B : CHANNELS.CHANNELREF := CHANNELS.OUTPARAMETERS (2);
-- The channel for communication with the other Ada program.
-- Output channels 0 and I are reserved for use by the run-time system.

begin

for I in 1 .. 5 loop
RES := (200.00,200.00,200.00);
VECTORIO.WRITE (B, RES);

end loop;

RES(0) := -1.00;
VECTORIO.WRITE (B, (RES(0),0.0,0.0));

loop
VECTOR_IO.READ (A, RESULT):
VECTOR_IO.WRITE (B, RESULT):
exit when RESULT(0) < 0.0;

end loop;

end PROJ3;
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-- File: proj4.ada

with TEXT 10;
with COMMON;
with CHANNELS;

procedure PROJ4 is

use COMMON;

RESULT: VECTOR;

A : CHANNELS.CHANNELREF := CHANNELS.OUTPARAMETERS (2);
-- The channel for communication with the other Ada program.
-- Output channels 0 and 1 are reserved for use by the run-time system.

begin

for I in I .. 5 loop
RESULT := (100.00,100.00,100.00);
VECTORIO.WRITE (A, RESULT);

end loop;

RESULT(0) := -1.00;
VECTORIO.WRITE (A, (RESULT(0),0.0,0.0));

end PROJ4:
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Booting root transputer...ok
DATA FROM TRANSPUTER # 0 500.00 500.00 500.00
DATA FROM TRANSPUTER # 0 500.00 500.00 500.(X)
DATA FROM TRANSPUTER # 0 500.00 500.00 500.00
DATA FROM TRANSPUTER # 0 500.00 500.00 500.00
DATA FROM TRANSPUTER # 0 500.00 500.00 500.00
DATA FROM TRANSPUTER # 1 400.00 400.00 400.00
DATA FROM TRANSPUTER # 1 400.00 400.00 400.00
DATA FROM TRANSPUTER # 1 400.00 400.00 400.00
DATA FROM TRANSPUTER # 1 400.00 400.00 400.00
DATA FROM TRANSPUTER # 1 400.00 400.00 400.00
DATA FROM TRANSPUTER # 2 300.00 300.00 300.00
DATA FROM TRANSPUTER # 2 300.00 300.00 300.0()
DATA FROM TRANSPUTER # 2 300.00 300.00 300.00
DATA FROM TRANSPUTER # 2 300.00 300.00 300.00
DATA FROM TRANSPUTER # 2 300.00 300.00 300.00
DATA FROM TRANSPUTER # 3 200.00 200.00 200.00
DATA FROM TRANSPUTER # 3 200.00 200.00 200.00
DATA FROM TRANSPUTER # 3 200.00 200.00 200.00
DATA FROM TRANSPUTER # 3 200.00 200.00 200.00
DATA FROM TRANSPUTER # 3 200.00 200.00 200.00
DATA FROM TRANSPUTER # 4 100.00 100.00 100.00
DATA FROM TRANSPUTER # 4 100.00 100.00 100.00
DATA FROM TRANSPUTER # 4 100.00 100.00 100.00
DATA FROM TRANSPUTER # 4 100.00 100.00 100.00
DATA FROM TRANSPUTER # 4 100.00 100.00 100.00
MAKE Program Maintenance Utility, Logical Systems Version 89.1
iserver /sb main.btl
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APPENDIX H

This appendix provides the code of Small Tactical System in a three transputers

network. Since this is also the multiple transputer network, the support code in

APPENDIX F can be used. There is only a few change in file "makefile" and "main.pgm"

which is shown in this appendix.
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-- File: common.ada

with CHANNELS;

package COMMON is

-- Declarations of common data types, especially those used for channel
-- communication.

type FLO6 is digits 6
range -(2.0 - 2.0**(-23))*2.0** 127 .. (2.0 - 2.0**(-23))*2.0** 127;

type COMPONENT is (X,Y,Z);
type VECTOR is array (COMPONENT) of FLO_6;
type ARY 7 is array (0..6) of VECTOR;
type VEC_3 is array (0..2) of FLO_6;

-- Instantiations of the generic channel i/o package.

package VECTOR_10 is new CHANNELS.CHANNEL_1O (VEC_3);
package ARRAY_10 is new CHANNELS.CHANNELIO (ARY_7);

end COMMON;
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-- File: proj0.ada

with TEXT_10, COMMON, CHANNELS;

procedure PROJO is

use COMMON,

package FLO_10 is new TEXTIO.FLOATIO(FLO6);
use FLO_10;

RESULT: VEC_3;
TOTAL : VEC_3;
SUM : VEC_3;

D : CHANNELS.CHANNELREF := CHANNELS.INPARAMETERS (2):
-- The channel used for communication with the program producing the stream.
-- Input channels 0 and I are reserved for use by the run-time system.

begin

for J in 1..5 loon
SUM := (f00.00,500.00,500.00):
TEXT JO.PUT ("DATA FROM TRANSPUTER # 0"):
FLOIO.PUT (SUM(0), FORE => 6, AFT => 4, EXP => 0);
FLO_IO.PUT (SUM(l), FORE => 6, AFT => 4, EXP => 0);
FLOIO.PUT (SUM(2), FORE => 6, AFT => 4, EXP => 0);
TEXTIO.NEWLINE;

end loop;

loop
VECTORIO.READ (D, TOTAL);
exit when TOTAL(0) < 0.0:
TEXT_IO.PUT ("DATA X FROM TRANSPUTER # 1 ");

FLO_IO.PUT (TOTAL(0), FORE => 6, AFT => 4, EXP => 0);
FLOIO.PUT (TOTAL(l), FORE => 6, AFT => 4, EXP => 0);
FLO_IO.PUT (TOTAL(2), FORE => 6, AFT => 4, EXP => 0),
TEXTIO.NEWLINE;

VECTOR_IO.READ (D, TOTAL),
TEXTIO.PUT ("DATA Y FROM TRANSPUTER # 1");
FLOJO.PUT (TOTAL(0). FORE => 6, AFT => 4, EXP => 0);
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FLOIO.PUT (TOTAL(l), FORE => 6, AFT => 4, EXP => 0);
FLO_1O.PUT (TOTAL(2), FORE => 6, AFT => 4, EXP => 0);
TEXTIO.NEW_LINE;

VECTOR_IO.READ (D, TOTAL):
TEXTIO.PUT ("DATA Z FROM TRANSPUTER # 1");
FLO_IO.PUT (TOTAL(0), FORE => 6, AFT => 4, EXP => 0);
FLOIO.PUT (TOTAL(1), FORE => 6, AFT => 4, EXP => 0);
FLOIO.PUT (TOTAL(2), FORE => 6, AFT => 4, EXP => 0);
TEXTIO.NEWLINE:

end loop:

end PROJO;
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-- File: projl.ada

with TEXT_10, COMMON, CHANNELS;
use TEXT_10, COMMON;

procedure PROJ 1 is

B : ARY_7;
TOTAL : VEC-3;

C : CHANNELS.CHANNELREF := CHANNELS. INPARAMETER S (2);
D: CHANNELS.CHANNELREF := CHANNELS.OUTPARAMETERS (2);

- 1 he channel used for comnmunication with the program producing the stream.
-Input channels 0 and I are reserved for use by the run-time system.

-type identification
type COMPONENTS is (XO,XIX2,X3,X4,X5,X6);.
type VECTORS is array (COMPONENTS) of FL0-6;
type POSITIONS is array (0..3) of FL0-6;
type VEC is array (0.-2) of FLO-6;

-- orthogonal constant
CONSTO: VECTORS :=(1.0,1.0,1.0,1.0.1.0,1.0,1.0);

CONSTI : VECTORS :(1 .0,0.666,0.333,0.0,-0.333,-0.666,- 1.0);
CONST2 : VECTORS :=(11.0,0.0,-0.6,-0.8,-0.6,0.0,1.0);

CONST3 : VECTORS :=(1.0,-1.0,-1.0,0.0,1.0,1.0,-1.0);

T.U,V : VECTORS :=(0.0,0.0,0.0,0.0,0.0,0.0,0.0);

POS-X,POS-Y,POSZ :POSITIONS := (0.0,0.0,0.0,0.0)"
COEF: VEC:

function VECTOR-SUMX (X : VECTORS) return FLO_6 is
SUM : FLO_6 := 0.0.

begin
for I in X'RANGE loop

SUMI := SUM + X(b:
end loop,
return SUM:

end VECTORSUM:



function VECTOR SUMSQUARE (X :VECTORS) return FLO_6 is
SUM-SQUARE : FLO_6: 0.0;,

begin
for I in X'RANGE loop

SUM-SQUARE := SUM-SQUARE + (X(I)**2');
end loop;
return SUMSQUARE;

end VECTORSUM-SQUARE;,

function ORTHOGONAL (P05_IN :VECTORS) return POSITIONS is
TEMP0,TEMP1 ,TEMP2,TEMP3 :VECTORS;
POSOUTO,POSOUTI,POS-OUT2,POS_OUT3 : FLO 6-
ORTHO: POSITIONS;

begin
for I in COMPONENTS loop

TEMPO(1:= POSLN(L) * CONSTO(I);
TEMPI(I) POSIN(I) * CONSTI(I)
TEMP2(I) :=POSIN(I) * CONST2(I);
TEMP3(I) := POSIN(I) * CONST3(I);.

end loop:
POSOCTO: VECTORSUM('TEMIPO)/VECTORSUM -SQUARE(CONSTO)-
POSOUTI VECTORS LM(TEMPI)/VECTOR_-SUM -SQUARE(CONSTI);
POSOUT' V ECTOR_ SU M(TEM1P2)/VECTORSU M SQU ARE (CONS T2),
POSOUT3 ;= VECTOR-SUM(TEMP3)/VECTOR_-SUM-SQUARE(CONST3);.
ORTHO := (POS_OUTO,POSOUTI,POSOUT2,POS-OUT3)-;
return ORTHO:

end ORTHOGONAL:

fUnction COEFFC.AL (A :in POSITIONS) return VEC is
aO~al,a2 : FLO_6; V :VEC,

b e (-i n
i:=A(0)+A( 1)+A(2)+A( 3);

a2 (A(2 )*(0.20001 )+t .A(3 )*(1.00I
V :=(a0,al,a2):.

return V:.
end COEFFCAL-.
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begin
loop

ARRAYIO.READ (C, B);
exit when B(0)(X) < 0.0;

T(XO) B(0)(X), U(XO) B(0)(Y); V(XO) BO()

T(X2): B(2)(X); U(X2): B(2)(Y); V(X2) B(2)(Z);
T(X3'): B(3)(X); U(X3): B(3)(Y); V(X3) B3()
T(X4) B(4)(X), U(X4) B(4)(Y); V(X4) B4()
T(X5) B(5)(X); U(X5) B(5)(Y); V(X5) B5()
T(X6): B(6)(X); U(X6): B(6)(Y); V(X6) B6()

POSX: ORTHOGONAL(T);
COEF: COEF -CAL(POSX);
TOTAL(0) :P LO_6(COEF(0));
TOTAL(l): PLO-6(COEF(l));
TOTAL(2) :=FLO_6(COEF(2));
VECTORIO.WRITE (D, TOTAL);

P05_Y :=ORTHOGONAL(U);
COEF: COEFCAL(POS-Y);
TOTAL(0) := LO_6(COEF(0));
TOTAL(lj: PLO_6(COEF(l));
TOTAL(2) :=PLO_6(COEF(2));
VECTO'ZIO.W RITE (D, TOTAL);

POSZ: ORTHOGONAL(V);
COEF: COEFF-CAL(POS-Z);
TOTAL(0): FLO 6(COEF(0))*.
TOTAL(l): PLO_6(COEF(1));
TOTA L(2) : PLO_6(COEF(2));
V ECTORIO.W RITE 3-, TOTAL);

end loop-,

TOTAL(0): -1.0;
VECTORIO.WRITE (D), (TOTAL(0), 0.0, 0.0));

end PROJI:
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-- File: proj2.ada

with TEXTTO, CALENDAR, GENERICELEMENTARYFUNCTIONS;
with COMMON, CHANNELS;
use TEXT_10, CALENDAR, COMMON;

procedure PROJ2 is

package MATHFUNCT is new GENERICELEMENTARYFUNCTIONS(FLO_6);
use MATHIFUNCT:

C : CHANNELS.CHANNELREF := CHANNELS.OUTPARAMEFERS (2);
-- The channel for communication with the other Ada program.
-- Output channels 0 and 1 are reserved for use by the run-time system.

-- Type identifications
type VELOCITIES is array (0..4) of VECTOR;

DELTATIME : constant FLO_6 := 0.25; -- delta time t = 1/4 seconds
NOTARGET : BOOLEAN := FALSE;
CURRENT : constant INTEGER := 4;
LINTSEC : INTEGER;
INTERVAL : DAYDURATION := 1.0;
DISPTIME : DAYDURATION := 0.0;
POSITION : VECTOR := (27000.0,22000.0,5000.0);
PP,P ,P2,P3,P4,P5,P6 : VECTOR;
INTVEL : VECTOR := (230.0,180.0,25.0),
VELOCITY : VELOCITIES;
B : ARY_7;

function "+"(LEFT, RIGHT : in VECTOR) return VECTOR is

-- This function is written to handle VECTOR addition

TEMP : VECTOR;
begin

TEMP(X) := LEFT(X) + RIGHT(X);
TEMP(Y) := LEFT(Y) + RIGHT(Y);
TEMP(Z) := LEFT(Z) + RIGHT(Z);
return TEMP;

end "+";
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function "-"(LEFT, RIGHT : in VECTOR) return VECTOR is
............................................................................

-- This function is written to handle VECTOR subtraction

TEMP• VECTOR;
begin

TEMP(X) := LEFT(X) - RIGHT(X);
TEMP(Y):- LEFT(Y) - RIGHT(Y);
TEMP(Z):= LEFT(Z) - RIGHT(Z);
return TEMP;

end "-""

function SIMPSON(XPOS: in VECTOR; VEL: in VELOCITIES) return VECTOR is
.....................................................................................................

-- This function performs numeric integration using SIMPSONS rule and
-- return a position vector giving a set of sample VELOCITIES and the
-- DELTATIME between those velocities.

T• VECTOR;
I COMPONENT;
J: INTEGER;

begin
for I in COMPONENT loop

T(I):= (VEL(VELOCITIES'FIRST) (I) + VEL(VELOCITIES'LAST) (I));
for J in VELOCITIES'FIRST+I..VELOCITIES'LAST-1 loop

if (J MOD 2) = 1 then
T(I) T(I) + 4.0*VEL(J) (I);

else
T(I) T(I) + 2.0*VEL(J) (I);

end if;
end loop;
T(I) := DELTATIME * T(I) / 3.0;

end loop;
return T;

end SIMPSON;

package ATOD is

-- This package is used to maintain the velocity values for the previous second at 1/4
-- second intervals. It has one function which returns an array of five vectors.
-- The task is written to handle concurrent processing of ACCELEROMETER.
........................................................................................................
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procedure INITIALIZEVELOCITY(FIRSTVEI :in VECTOR):
procedure GETVELOCITIES(NEWVEL: out VELOCITIES);

task ACCELEROMETER is
entry START;

end ACCELEROMETER;

end ATOD;

package body ATOD is

VEL : VELOCITIES := (others => (others => 0.0));

procedure INITIALIZEVELOCITY(FIRSTVEL: in VECTOR) is
I :INTEGER;

begin
for I in VELOCITIES'RANGE loop

VEL(I) := FIRSTVEL;
end loop:

end INITIALIZEVELOCITY:

procedure GETVELOCITIES(NEW_VEL out VELOCITIES) is
begin

NEWVEL:= VEL;
end GETVELOCITIES;

task body ACCELEROMETER is
use CALENDAR:
INTERVAL constant DURATION 0.25;
DISPTIME DURATION:= 0.0;
LINTSEC :INTEGER := 0;

begin
accept START do

null;
end START;
LINTSE,:= INTEGER(SECONDS(CLOCK));
DISPTIME:= DURATION(LINTSEC);
while DISP TIME < SECONDS(CLOCK) loop

DISPTIME:= DISPTIME + INTERVAL;
end loop;
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loop
delay DISPTIME - SECONDS(CLOCK);
for I in VELOCITIES'FIRST..VELOCITIES'LAST-1 loop

VEL(I) :=VEL(1+ 1);
end loop;
VEL( VELOCITIES 'LAST): VEL( VELOCITIES 'LAST) +

(0.012,0.0098,0.00275);
exit when VEL(4)(X) > 700.0;

end loop-,
end ACCELEROMETER;

end ATOD;

begin -- ma in program

ATOD.INITIALIZEVELOCITY(INL-VEL)-
LINTSEC := INTEGER(SECONDS (CLOCK));
DISPTIME: DURATION(LINTLSEC) + 0.8;
ATOD. ACCELEROMETER. START;
delaN (DISP_TIME - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITIES (VELOCITY);
PO(X) POSITION(X);
P0Y) :=POSITION(Y);

P0(Z) POSITION(Z);
B (0)(A) P0(X);
B (0) (Y) M=P0Y);
B (0) (Z) P0(Z);

POSITION := POSITION - SIMPSON(POSITION,VELOCITY):
DISPTIME: DISPTIME + INTERVAL,
delay (DISP_TIME - SECONDS(CLOCK) - 0.02):
ATOD.GETVELOCITIES (VELOCITY);
P 1(X) := POSITION(X);
P 1 (Y) :~POS ITION (Y);
P1I(Z) :=POS ITION (Z);
B(1)(X): P1(X);
B(l)(Y): P1(Y);
B(l)(Z) := P1(Z);

POSITION := POSITION - SIMPSON(POSITION,VELOCITY);
DISPTIME := DISPTIME + INTERVAL;
delay (DISPTIME - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITIES (VELOCITY);
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P2(X) POSITION(X);
P2(Y) POSITION(Y);
P2(Z) POSITION(Z);
B(2)(X): P2(X);
B(2)(Y): P2(Y);
B(2")(Z): P2(Z);

POSITION: POSITION - SIMPSON(POSITION,VELOCITY);
DISPTIME: DISPTIME + INTERVAL;
delay (DISP_TIME - SECONDS(CLOCK) - 0.02);
ATOD.GET_-VELOCITIES (VELOCITY);
P3(X) :=POSITION(X);
P3(Y): POSITION(Y);
P3(Z) :=POSITION(Z);
B(3)(X) :=P3(X);
B(3)(Y): P3(Y);
B(3)(Z): P3(Z);

POSITION :=POSITION - S IMPS ON(POS ITION ,VELOCITY);
DISPTIMNE: DISPTIME + INTERVAL;
delay (DISPTIMIE - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITIES (VELOCITY);
P4(X): POSITION(X);
P4(Y) POSITION(Y);
P4(Z) POSITION(Z);
B(4)(X): P4(X);,
B(4)(Y): P4(Y);
B(4)(Z): P4(Z);

POSITION:= POSITION - SINIPSON(POS ITION ,VELOCITY):
DISPTIME: DISPTIME + INTERVAL;
delay (DISPTIME - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITIES (VELOCITY):
P5(X) :=POSITION(X;
P5(Y): POSITION(Y);
P5(Z) :=POSITION(Z);
B(5)(X) := P5(X);
B (5) (Y) :=P5 (Y);
B (5) (Z) P5 (Z).

POSITION: POSITION - SIMPSON(POSITION,VELOCITY);
* DISPTIME := DISPTIME + INTERVAL;

delay (DISPTIME - SECONDS(CLOCK) - 0.02);
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ATOD.GETVELOCITIiES (VELOCITY);
P6(X): POSITION(X);
P6(Y): POSITION(Y);
P6(Z) :=POSITION(Z);
B(6)(X) := P6(X);
B(6)(Y): P6(Y);
B(6)(Z): P6(Z);

POSITION: POSITION - S IMPSON(POSITIONVELOCITY);
DISPTIME: DISPTIME + INTERVAL;
while NOTARGET = FALSE loop

if POSITION(X) > 0.0 then

ARRAYIO.WRITE(C, B);

delay (DISPTIME - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITIES (VELOCITY);
P(X): POSITION(X).
P(Y): POSITION(Y),
P(Z) :=POSITION(Z),

POSITION: POSITION - SIMPSON(POSITION,VELOCITY)-.
DISPTIME :=DISPTIME + INTERVAL;

P0(X) P1I(X);
P0(Y) P I1(Y);
P0(Z) P1I(Z);

P1I(X): P2(X),
P1I(Y): P2(Y);
P1I(Z) P2(Z);

P2(X) :=P3(X):,

P2(Y): P3(Y);
P2(Z) :=P3(Z):,

P3(X): P4(X):,
P3(Y): P4(Y):
P3(Z) := P4(Z):

P4(X): P5(X);
P4(Y): P5(Y);
P4(Z): P5(Z):-
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P5(X) P6(X);
P5(Y) P6Y);
P5(Z) :=P6(Z);

P6(X) :=X)

P6Y) :=P(Y);

P6(Z) :=P(Z),

B(0)(X) PO(X);
B(l)(X) :PI(X);
B(2)(X) P2(X);
B(3)(X) P3(X):,
B(4)(X) P4(X);
B(5)(X) :=P5(X);

B(6)(X) P6(X);
B(0)(Y) :=P0(Y);

BM1(Y) :=P1(Y);

B(2)(Y) :=P2(Y)-:

B(3)()) P3(Y):
B(4i(Y) P4(Y);
B(5)(Y) P5Y).
B(6)(Y) M6Y);
B(0)(Z) P0(Z):
B(1)(Z) :PL(Z),
B(2)(Z) :=P2(Z);
B(3)(Z) :=P3(Z);

B(4)(Z) :=P4(Z),

B(5)(Z) :=P5(Z):

B(6)(Z) :=P6(Z);

else
NOTARGET := TRU-'E:

end if,
end loop;
B(0)X) := -1.00,
ARRAYIO.WRITF(C, ((B(0)(X).others => 0.0),(others => 0.0),(others => 0.0).

(others => 0.0), (others => 0.0), (others => 0.0), (others => 0.0))):.

end PROJ2:.
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# File: makefile

' make help' to print option list

# Complete development cycle:
# make family -- makes Ada family and library directories
# make -- compiles, links, configures source
# make run -- run bootable code

N1ODE =s

PROC =8

OPTS =/$(MODE) /t$(PROC)

# make the executable code
miai n. bt1: mai nh. c$ (PROC)$ (MODE) proj Ilh.c$ (PROC)$ (MODE)
proj2h.c$(PROC)$(MODE) main.pgmi

@ echo EXPECT 1 WARNING...
iconf /s main.pgm
@ f:\utilbell

mainh.c$(PROC)$(MODE): projO.o proj Oh.t$(PROC)$ (MODE)
merger. tS (PROC)$ (MODE) mainh.t$(PROC)$(MODE)

juink main h. t$(PROC) $(MODE) projO.o proj~h.t$(PROC)$(MODE)
merger.tS(PROC)$(MODE) adarts8.1ib hostio.lib occamn8s.lib

projO.o: common .ada projO.ada
ada invoke projO.inv,ves

proj~h .t$(PROC)S( MODE): projOh2.tax projOh .occ
occani $OPTS) projOh.occ

projlh2.tax: projOh2.occ
occam Ita /x projOh2.occ

merger. tS( PROC) $(MODE): merger.occ
occam $(OPTS) merger.occ

mainh.tS(PROC)$(MODE): mainh.occ
occam $(OPTS) mainh.occ

132



proj I h.c$(PROC)$(MODE): proj 1.0 proj I h.t$(PROC)$(MODE)
ilink proj I h.t$(PROC)$(MODE) proj 1.o adarts8.lib hostio.lib occarn8s.lib

projI1.o: commonada proj I.ada
ada invoke projl.inv,,yes

proj I h.t$(PROC)$(MODE): proj 1 h2.tax proj I h.occ
occamn $(OPTS) proj Ih.occ

projlh2.tax: projlh2.occ
occam Ita /x projlIh2.occ

proj-1h.c$(PROC)$(MODE): proj2.o proj 2h -t$(PROC)$ (MODE)
ilink proj2h.t$(PROC)$(MODE) proj2.o adarts8.lib hostio.lib occarn8s.lib

proj2.o: common.ada proj2.ada
ada invoke proj.Inv,yes

proj2h.tS(PROC$S(MODE): proj2h2.tax proj2h.occ
occam $(OPTS) pro12h.occ

proj2h2.tax: proj2h2.occ
occarn /ta /x proj2h2.occ

iserver /sb rnain.btd

check:
check /r

family:
ada invoke farnily.inv,yes
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-- File: main.pgm

#INCLUDE "hostio.inc"

#INCLUDE "linkaddr.inc"

#USE 'mainh.c8s'
#USE 'projlh.c8s'
#USE 'proj2h.c8s"

CHAN OF INT AdaChannel:
CHAN OF TNT AdaChan:
CHAN OF SP FromFiler, ToFiler:

PLACED PAR

PROCESSOR 0 T8

PLACE FroniFiler AT link0.in:
PLACE ToFiler AT link0O.out:
PLACE AdaChannel AT link2.in:

[100000J TNT wsl:

rnain.harness (FromFiler, ToFiler, AdaChannel, Nksl)

PROCESSOR 1 T8

PLACE AdaChannel AT linkl.out:
PLACE AdaChari AT link2.in:

[1000001 TNT ws2:

projI .harness (AdaChannel, AdlaChan, ws2)

PROCESSOR 2 T8

PLACE AdlaChan AT link3.out:

[1000001 TNT ws3:

proj2l.harness (AdaChan, ws3)
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